
A Survey of Rollback-Recovery Protocols in
Message-Passing Systems

E.N. Elnozahy D.B. Johnson

October 3,1996

CMU-CS-96-181

Y.M. Wang

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A version of this paper has been submitted for publication in ACM Computing
Surveys.

19961101 030
E.N. Elnozahy was supported in part by the National Science Foundation under Research Ini-

tiation Award CCR-9410116 and CAREER Award CCR-9502933, and by the Defense Advanced
Research Project Agency under contract DABT63-93-C0054.

D.B. Johnson was supported in part by the Defense Advanced Research Projects Agency
under contract number DABT63-93-C-9954, and by the National Science Foundation under
CAREER Award NCR-9502725.

Y.M. Wang is with AT&T Laboratories.
The views and conclusions contained in this document are those of the author and should

not be interpreted as representing the official policies, either expressed or implied, of the NSF,
DARPA, Carnegie Mellon University, AT&T or the U.S. Government.

DISTRIBUTION STATEMENTX

Approved for public release;
Distributioq Unlimited

MIG QXFÄLXTYIHSPECEIBD$

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

DATE
31 OCT 96

^1. REPORT IDENTIFYING INFORMATION

A. ORIGINATING AGENCY SCH OF COMPUTER SCI

I R nnnDT TiTi - .. —
, B- REPORT TITLE AND/OR NUMBER-

jCMU-CS-96-181 (3 OCTOBER 96)

C MONITOR REPORT NUMBER

D- PREPARED UNDER CONTRACT NUMBER*

DTIC ACCESSION

DISTRIBUTION STATEMENT UNLIMITED

2. Ri

DTIC F°»" 50
OCT 95 W

PREV,0US tUMIONS ARE OBSOLETE*

Keywords: Distributed systems, fault tolerance, high availability, checkpointing,
message logging, rollback, recovery

Abstract

The problem of rollback-recovery in message-passing systems has undergone extensive
study. In this survey, we review rollback-recovery techniques that do not require special
language constructs, and classify them into two primary categories. Checkpoint-based
rollback-recovery relies solely on checkpointed states for system state restoration.
Depending on when checkpoints are taken, existing approaches can be divided into
uncoordinated checkpointing, coordinated checkpointing and communication-induced
checkpointing. Log-based rollback-recovery uses checkpointing and message logging.
The logs enable the recovery protocol to reconstruct the states that are not checkpointed.
There are three different log-based approaches, namely, pessimistic logging, optimistic
logging and causal logging. We identify a set of desirable properties of rollback-
recovery protocols, and compare different approaches with respect to these properties.
Log-based rollback-recovery protocols generally rely on the assumption of piecewise
determinism and pay additional overhead to allow faster output commits and more
localized recovery. We present research issues under each approach, and review existing
solutions to address them. We also present implementation issues of checkpointing and
message logging.

1 Introduction

Rollback-recovery achieves fault tolerance by periodically saving the state of a process
during failure-free execution, and restarting from a saved state upon a failure to reduce
the amount of lost work. The saved process state is called a checkpoint, and the
procedure of restarting from previously checkpointed state is called rollback-recovery.
A checkpoint can be saved on either stable storage or the volatile storage of another
process, depending on the failure scenarios to be tolerated. For long-running scientific
applications, checkpointing and rollback-recovery can be used to minimize the total
execution times in the presence of failures. For mission-critical service-providing
applications, checkpointing and rollback-recovery can be used to improve service
availability by providing faster recovery to reduce service down time.

Rollback-recovery in message-passing systems is complicated by the issue of roll-
back propagation due to interprocess communications. When the sender of a message
m rolls back to a state before sending m, the receiver process must also roll back to a
state before m's receipt; otherwise, the states of the two processes would be inconsistent
because they would show that message m was not sent but has been received, which
is impossible in any correct failure-free execution. Under some scenarios, cascading
rollback propagation may force the system to restart from the initial state, losing all
the work performed before a failure. This unbounded rollback is called the domino
effect [144]. The possibility of the domino effect is highly undesirable because all
checkpoints taken may turn out to be useless for protecting an application against
losing all useful work upon a failure.

In a message-passing system, if each participating process takes its checkpoints
independently then the system is susceptible to the domino effect. This approach is
called uncoordinated checkpointing or independent checkpointing. One way to avoid
the domino effect is to perform coordinated checkpointing: the processes in a system
coordinate their checkpoints to form a system-wide consistent state. Such a consistent
set of checkpoints can then be used to bound the rollback propagation. Alternatively,
communication-induced checkpointing forces each process to take checkpoints based
on some application messages it receives from other processes. This approach does not
require system-wide coordination and therefore may scale better. The checkpoints are
taken such that a consistent state always exists, and the domino effect cannot occur.

The above approaches rely solely on checkpoints, thus the name checkpoint-based
rollback-recovery. In contrast, log-based rollback-recovery uses checkpointing and
message logging.1 Log-based rollback-recovery relies on the assumptions underlied in
apiecewise deterministic (PWD) execution model [51,167]. Under the PWD model,
each process execution consists of a sequence of deterministic state intervals, each
starting with the occurrence of a nondeterministic event. By logging and replaying the
nondeterministic events in their exact original order, a process can deterministically

'Logging is not confined to messages only. It also includes logging nondeterministic events. Earlier
papers in this area have assumed a model in which messages represent nondeterministic events in addi-
tion to interprocess communications. In this paper, we use the terms event logging and message logging
interchangeably.

recreate its pre-failure state even if it has not been checkpointed. Log-based rollback-
recovery in general enables a system to have a recoverable state beyond the most recent
set of consistent checkpoints. It is therefore particularly attractive for applications that
frequently interact with the outside world. The outside world consists of all input and
output devices that cannot roll back.

This survey is organized as follows. Section 2 describes the system model, the
terminology and the generic issues in rollback-recovery; Section 3 surveys checkpoint-
based rollback-recovery protocols, and classifies them into three primary categories:
uncoordinated checkpointing, coordinated checkpointing and communication-induced
checkpointing; Section 4 covers log-based recovery techniques including pessimistic
logging, optimistic logging and causal logging; Section 5 addresses the implementation
issues; Section 6 gives additional references to emerging new research topics and related
research areas, and Section 7 concludes the survey. Rollback-recovery techniques that
rely on special language constructs such as recovery blocks [144] and transactions [64]
are not covered in this survey. Also, we do not address the use of rollback-recovery to
tolerate Byzantine failures.

2 Background and Definitions

2.1 System Model and Failure Model

A message-passing system consists of a fixed number of processes that communicate
only through messages. Throughout this survey, we use N to denote the total number
of processes in the system. Processes cooperate with each other to execute a distributed
application program, and interact with the outside world by receiving and sending input
and output messages, respectively. Figure 1 shows a sample system consisting of three
processes, where horizontal lines extending toward the right hand side represent process
executions, and arrows between processes represent messages.

Rollback-recovery protocols generally assume that the communication network is
immune to partition, but differ in the assumptions they make about the reliability of in-
terprocess communication. Some protocols assume that the communication subsystem
delivers messages reliably in First-In-First-Out (FIFO) order. Other protocols assume
that the communication subsystem can lose, duplicate, or reorder messages. The two
different assumptions lead to different treatments of in-transit messages, as will be
described shortly. Their practical implications are discussed in Section 5.

A process may fail, in which case it loses its volatile state and stops execution
according to the fail-stop model [150]. Processes have access to a stable.storage
device that survives failures. State information saved to the device during failure-free
execution then can be used for recovery. The number of tolerated process failures
may vary from one to N, and the recovery protocol needs to be accordingly designed.
Whether failures that occur during recovery need to be tolerated or not also affects the
choice of recovery protocols [51,157].

Outside world Input message Output message

Message-passing system

Processes >/>

Messages

Figure 1: Example message-passing system with three processes.

2.2 Consistent System States

The state of a message-passing system is the collection of the individual states of all
participating processes and the states of the communication channels. Intuitively, a
consistent system state is one that may occur in a legal execution of a distributed
computation. A more precise definition of a consistent system state is one in which
every message that has been received is also shown to have been sent in the state of
the sender [38]. For example, the cut in Figure 2(a) straddles a consistent state of the
three processes in Figure 1, while the cut in Figure 2(b) straddles an inconsistent cut
because process P% is shown to have received m but Pi's state does not reflect sending
the message.

Consistent cut Inconsistent cut

Process
states (a) (b)

Figure 2: (a) Consistent cut; (b) inconsistent cut.

Messages that are sent but not yet received may not cause the system state to be

inconsistent. These messages are called in-transit messages (see for example message
m' with respect to the cut in Figure 2(a)). Whether a consistent system state should
include the in-transit messages depends on whether the system model assumes reliable
communication channels or not. For reliable communication channels, a consistent
state must include in-transit messages because they will always be delivered to their
destinations in any legal execution of the system. For example, in Figure 3(a), the
reliable communication protocol can handle only the in-transit messages potentially
lost in the lossy communication channels during failure-free executions; lost in-transit
messages due to process failures need to be separately handled by the rollback-recovery
protocol itself. On the other hand, if a system model assumes lossy communication
channels, then omitting in-transit messages from the system state does not cause any
inconsistency. In such a model, there is no guarantee that the communication subsystem
will deliver all messages to their destinations in a legal execution. For example, in
Figure 3(b), lost in-transit messages due to rollback-recovery cannot be distinguished
from those caused by lossy communication channels; a reliable communication protocol
at a higher layer can guarantee the delivery of both types of messages.

User applications

Rollback-recovery protocol

Reliable communication protocol

Lossy communication channels

User

applications

Reliable

communication

protocol

User

applications

Rollback-recovery protocol

Lossy communication channels

(a) (b)

Figure 3: Implementations of rollback-recovery protocols (a) on top of a reliable
communication protocol; (b) directly on top of lossy communication channels.

An inconsistent state represents a state that can never occur in any legal execu-
tion of the system. Inconsistent states occur because of failures. For example, the
inconsistency in Figure 2(b) can occur if process P\ fails after sending message m
to Pz. A fundamental goal of any rollback-recovery protocol is to bring the system
into a consistent state when inconsistencies occur due to a failure. The reconstructed
consistent state is not necessarily one that has occurred before the failure. It is sufficient
that the reconstructed state be one that could have occurred before the failure in a legal

execution.

2.3 Checkpointing Protocols

In checkpointing protocols, each process periodically saves its state on stable storage.
The state should contain sufficient information to restart process execution. A consistent
global checkpoint refers to a set of N local checkpoints, one from each process, which
forms a consistent system state. Any consistent global checkpoint can be used for
system restoration upon a failure. To minimize the amount of lost work, the most
recent consistent global checkpoint, called the recovery line [144], is the best choice.

Figure 4 gives an example where processes are allowed to take their checkpoints in-
dependently, without coordinating with each other. A black bar represents a checkpoint,
and each process is assumed to start its execution with an initial checkpoint. Suppose
process P% fails and rolls back to checkpoint C. The rollback "unsends" message m
and so P\ is required to roll back to checkpoint B to "unreceive" m. The rollback of P2
thus propagates to Pi, therefore the term rollback propagation. Pi's rollback further
"unsends" m' and forces PQ to roll back as well. Such cascading rollback propagation
can eventually lead to an unbounded rollback, called the domino effect [144], as illus-
trated in Figure 4. The recovery line for the single failure of P% consists of the initial
checkpoints. Thus, the system has to roll back to the beginning of its execution and
loses all useful work in spite of all the checkpoints that have been taken. To avoid the
domino effect, processes need to coordinate their checkpoints so that the recovery line
is advanced as new checkpoints are taken.

Recovery

pi

, ,
■

line

■
Checkpoint

■ ■

■ O \ ■ ' 1 \. m'

■

■ / \, / ',
/■
1 V ■

-
■ ■

c
A Failure

Figure 4: Recovery line, rollback propagation and domino effect.

2.4 Logging Protocols

Log-based rollback-recovery uses checkpointing and logging to enable processes to
replay their execution after a failure beyond the most recent checkpoint. This property
is useful when interactions with the outside world are necessary. It enables a process

to repeat its execution and be consistent with output sent to the outside world without
having to take expensive checkpoints before sending such output. Additionally, log-
based recovery generally is not susceptible to the domino effect, allowing processes to
use uncoordinated checkpointing if desired.2

Log-based recovery relies on the assumptions underlied in apiecewise deterministic
(PWD) execution model [51,167] and employs an additional logging protocol. Under
the PWD assumption, a process execution consists of a sequence of state intervals, each
starting with a nondeterministic event such as a message receipt from another process.
The execution within each state interval is deterministic. Thus, by logging every
nondeterministic event during failure-free execution and replaying the logged events
in their original order during recovery, a process can replay its execution beyond the
most recent checkpoint. A process state is recoverable if there is sufficient information
to replay the execution up to that state despite any future failures in the system.

In Figure 5, suppose messages m5 and m6 are lost upon the failure affecting both
processes Pi and P2, while all the other messages survive the failure. Message m7

becomes an orphan message because process P2 cannot guarantee the regeneration of
the same me after the rollback, and Pi cannot guarantee the regeneration of the same
m-j without the original m6. As a result, the surviving process P0 becomes an orphan
process and is forced to roll back as well. As indicated in Figure 5, process states X, Y
and Z then form the maximum recoverable state [89], i.e., the most recent recoverable
consistent system state. Process P0 (P2) rolls back to checkpoint A (C) and replays
message m4 (m2) to reach X (Z). Process Pi rolls back to checkpoint B and replays
m\ and m^ in their original order to reach Y.

2.5 Interactions with The Outside World

A message-passing system often interacts with the outside world to receive input data
and show the outcome of the computation, or to receive service requests and reply with
the requested information. The outside world cannot be relied on to roll back if a failure
occurs in the system. For example, a printer cannot roll back the effects of printing a
character; an automatic teller machine cannot recover the money that it dispensed to
a customer; a deleted file cannot be recovered (unless its state is included as part of
the checkpoint [166,191]). It is therefore necessary to ensure that the outside world
perceive a consistent behavior of the system despite failures. Thus, before sending
output to the outside world, the system must ensure that the state from which the
output is sent will be recovered despite any future failure. This is commonly called the
output commit problem. Some rollback-recovery protocols may need to run a special
algorithm to ensure the recoverability of the current state, while some protocols can
commit output directly without the need for special arrangements.

2We use the terms of event logging and message logging interchangeably. Log-based recovery has
traditionally been called message logging, as earlier papers have assumed that nondeterministic events can
be converted to messages. Also, "message logging" has sometimes been used in the literature to refer to the
recording of in-transit messages [42,187]. This naming convention is not common and we do not use it in
this survey.

Maximum
recoverable

state

. z
m5 ,m6 lost upon failure

Figure 5: Message logging for deterministic replay.

Similarly, the input messages that a system receives from the outside world may
not be reproducible, as it may not be able to regenerate them. Therefore, a recovery
protocol must arrange to save the input messages so that they can be retrieved when
needed for execution replay after a failure. A common approach is to save each input
message on stable storage before allowing the application program to process it.

2.6 Stable Storage

Rollback-recovery uses stable storage to save checkpoints, event logs, and other
recovery-related information. Stable storage in rollback-recovery is only an abstrac-
tion, although it is often confused with disk storage which is usually used to implement
it. Stable storage must ensure that the data stored will persist through the tolerated
failure modes. Therefore, in a system that tolerates a single failure, stable storage
may consist of the volatile memory of another process [29,88]. A system that wishes
to tolerate an arbitrary number of transient failures can implement stable storage by
storing information on a reliable disk local to each host. And a system that tolerates
non-transient failures must ensure that the recovery information related to a particular
process is always stored on a persistent medium outside the host on which the process
is running. A highly-available file system can be used in that case [103]. Independent
of the technique that implements stable storage, we call an event or a message fully
logged if it has been stored such that it would persist the tolerated failures in the system.

2.7 Garbage Collection

Checkpoints and event logs consume storage resources. As the application progresses
and more recovery information is collected, a subset of the stored information may

become useless for recovery. A common approach to garbage collection is to identify
the recovery line and discard all information relating to events that occurred before that
line. For example, processes that coordinate their checkpoints to form consistent states
will always restart from the most recent checkpoints, and so all previous checkpoints
can be discarded. Garbage collection is an important pragmatic issue in rollback-
recovery protocols. Running a special algorithm to discard useless information incurs
overhead but may be necessary to free up space on stable storage, posing two conflicting
requirements to the system implementors. Recovery-protocols differ in the amount and
nature of the recovery information they need to store on stable storage, and therefore
differ in the complexity and invocation frequency of their garbage collection algorithms.

3 Checkpoint-Based Rollback-Recovery

Upon a failure, checkpoint-based rollback-recovery restores the system state to the most
recent consistent set of checkpoints, i.e., the recovery line [144]. It does not rely on
piecewise determinism, and so does not need to detect, log, and replay nondeterministic
events. Since there is no guarantee that pre-failure execution can be deterministically
regenerated after a rollback, it is more suitable for applications that do not frequently
interact with the outside world. Checkpoint-based rollback-recovery techniques can be
classified into three categories: uncoordinated checkpointing, coordinated checkpoint-
ing, and communication-induced checkpointing.

3.1 Uncoordinated Checkpointing

3.1.1 Overview

Uncoordinated (or independent) checkpointing allows each process to decide indepen-
dently when to take checkpoints. The main advantage is the lower runtime overhead
during normal execution because no coordination among processes is necessary. Au-
tonomy in taking checkpoints also allows each process to select appropriate checkpoint
positions to further reduce the overhead by saving a smaller amount of state information.
The main disadvantage is the possibility of the domino effect, as shown in Figure 4,
which may cause a large amount of useful work to be undone regardless of how many
checkpoints have been taken. In addition, each process needs to maintain multiple
checkpoints, and a garbage collection algorithm needs to be invoked periodically to
reclaim the checkpoints that are no longer useful.

During normal execution, the dependencies between checkpoints caused by mes-
sage exchanges need to be recorded so that a consistent global checkpoint can be
determined during recovery. The following direct dependency tracking technique is
commonly used in uncoordinated checkpointing [25,178,192]. Letc,|X(0 < i < N—l,
x > 0) denote the xth checkpoint of process P,, where i is called the process id and
x the checkpoint index (we assume each process P{ starts its execution with an initial
checkpoint c,-i0); and let IitX (0 < i < N - 1, x > 1) denote the checkpoint interval

(or interval) between CiiX-\ and c,-|ä,. As illustrated in Figure 6, when process Pj at
interval Ii>x sends a message m to Pj, the pair (i, x) is piggybacked on m. When P,-
receives m during interval IjiV, it records the dependency from J,iX to Ij<y, which is
later saved onto stable storage when checkpoint CJIV is taken.

'iy-

pj

cj,0 cj,l cj,y-l cj,y

I 1" "I

i,0 c i,l c i, x-1

hx

Figure 6: Checkpoint index and checkpoint interval.

If a failure occurs, the rollback initiator will broadcast a dependency_request
message to collect all the dependency information maintained separately at each pro-
cess. When a process receives the dependency-request message, it stops its execution
and replies with the stable dependency information and the dependency information
associated with its current volatile state (called a volatile checkpoint), if available. The
initiator then calculates the recovery line based on the global dependency information,
and broadcasts a rollback_request message containing the recovery line. Upon receiv-
ing the rollback_request, if a process's volatile checkpoint belongs to the recovery
line, it simply resumes execution; otherwise, it rolls back to an earlier checkpoint as
indicated by the recovery line.

3.1.2 Dependency Graphs and Recovery Line Calculation

Given the checkpoint and communication pattern shown in Figure 7(a), there are
two approaches proposed in the literature to determining the recovery line. The first
approach is based on a rollback-dependency graph [25,35,184] in which each node
represents a checkpoint and a directed edge is drawn from Ci]X to Cjiy if (1) i ^ j, and a
message m is sent from J,|X and received in i))9 or (2) i = j and y = x + 1. The name
"rollback-dependency graph" comes from the observation that if IiiX is rolled back,
then Ij>y must also be rolled back. The rollback-dependency graph corresponding to
the pattern in Figure 7(a) is illustrated in Figure 7(b). To calculate the recovery line, the
graph nodes corresponding to the volatile checkpoints of the failed processes Po and
Pi are initially marked. A reachability analysis [25,184] is performed by marking all
the nodes reachable from any of the initially marked nodes. The last unmarked node
of each process then forms the recovery line as shown in Figure 7(b).

Failure

Checkpoint

(a)

Recovery
line Marked

Initially
marked

P ?^>,0 r0 n.—

Volatile
checkpoint

(b) (c)

Figure7: (a) Example checkpoint and communication pattern; (b) rollback-dependency
graph; (c) checkpoint graph.

The second approach is based on a checkpoint graph [178,183]. Checkpoint graphs
are similar to rollback-dependency graphs except that, when a message is sent from I,->a.
and received in IjtV, a directed edge is drawn from Ci<x-\ (instead of c,-|!r) to CJI9, as
shown in Figure 7(c). The recovery line can be calculated by first removing the nodes
corresponding to the volatile checkpoints of the failed processes, and then applying the
following rollback propagation algorithm [178,187] on the checkpoint graph:

I* Initially, all checkpoints are unmarked */

include the last checkpoint of each process in a root set;
mark all the checkpoints strictly reachable from any checkpoint in the root

set;
while (at least one checkpoint in the root set is marked) {

replace each marked checkpoint in the root set by the last unmarked
checkpoint of the same process;
mark all the checkpoints strictly reachable from any checkpoint in the
root set;

}

10

the root set is the recovery line.

The example demonstrates that the two approaches are equivalent and result in the same
recovery line. The choice usually depends on which graph is more convenient for the
issues to be discussed.

3.1.3 Garbage Collection

The garbage collection algorithm for independent checkpointing consists of calculating
the recovery line, and discard the obsolete checkpoints before the states that form the
line. The calculation proceeds as follows: construct a nonvolatile rollback-dependency
graph by omitting the incoming edges of volatile checkpoints (which correspond to
volatile dependency information), and initially mark all volatile checkpoints to start the
reachability analysis. Figure 8 illustrates the nonvolatile rollback-dependency graph
and the global recovery line of Figure 7(a). Only the first checkpoint of each process
is obsolete and can be garbage-collected. As demonstrated by the figure, when the
global recovery line is unable to advance due to rollback propagation, a large number
of nonobsolete checkpoints may need to be retained.

To reduce the number of retained checkpoints, Wang et al. derived the necessary
and sufficient condition for a checkpoint to be useful for any future recovery [185,186].
It was shown that there exists a set of N recovery lines, the union of which contains all
useful checkpoints. Each of the N recovery lines is obtained by initially marking one
volatile checkpoint in the nonvolatile rollback-dependency graph. Figure 9 illustrates
the execution of the optimal checkpoint garbage collection algorithm to find these N
recovery lines. Since the four nonobsolete checkpoints {A, B, C, D} and the four
obsolete checkpoints do not belong to the union, they can be safely discarded without
affecting the safety of any future recovery. It was also proved that the number of useful
checkpoints can never exceed N(N + l)/2, and the bound is tight [185].

3.2 Coordinated Checkpointing

3.2.1 Overview

In consistent checkpointing, the processes coordinate their checkpoints to form a global
consistent state. Consistent checkpointing is not susceptible to the domino effect,
since the processes always restart from the most recent checkpoint. Also, recovery
and garbage collection are both simplified, and stable storage overhead is lower than
in uncoordinated checkpointing. The main disadvantage is the sacrifice of process
autonomy in taking checkpoints. In addition, a coordination session needs to be
initiated before committing any output, and checkpoint coordination generally incurs
message overhead.

A straightforward approach to coordinated checkpointing is to block interprocess
communications until the checkpointing protocol executes [43,174]. This can be

11

Global
recovery

line

Obsolete
checkpoints

Figure 8: Garbage collection based on global recovery line and obsolete checkpoints.

Marked

(c) (d)

Figure 9: Optimal checkpoint garbage collection.

12

achieved by using the following two-phase blocking protocol: the initiator (coordina-
tor) broadcasts a checkpoint-request message; when a process receives the check-
point-request message, it takes a checkpoint, stops sending application messages,
and replies with a local_checkpoint_done message; once the initiator receives lo-
cal-Checkpoint_done from every other process, it broadcasts a global_checkpoint_done
message; upon receiving globaLcheckpoint-done, each process commits its new
checkpoint and resumes sending application messages. If a failure occurs, a simple
recovery procedure is to roll back all processes in the system to the latest committed
global checkpoint. When it is desirable to minimize the number of processes involved
in a rollback, the general recovery line calculation algorithms based on dependency
tracking (as describe in Section 3.1) can still be applied [100].

3.2.2 Nonblocking Checkpoint Coordination

Instead of blocking interprocess communications, an alternative is to shift the respon-
sibility of maintaining checkpoint consistency from the sender side to the receiver
side. A fundamental problem in nonblocking checkpoint coordination is to avoid post-
checkpoint messages like m in Figure 10(a), which is sent after process PQ receives
checkpoint-request, and received before checkpoint-request reaches Pi. Under the
assumption of FIFO channels, this problem can be solved by always generating a check-
point-request before sending any post-checkpoint messages, and forcing each process
to take a checkpoint upon receiving the first checkpoint-request, as illustrated in Fig-
ure 10(b). Chandy and Lamport's distributed snapshot algorithm [38] provides such a
nonblocking checkpoint coordination protocol. (The checkpoint-request message is
called a marker in their paper.) Note that, since we only need the checkpoint-request
to be processed before any post-checkpoint messages, checkpoint-request can be pig-
gybacked on every post-checkpoint message m and examined by the receiver before m
is processed [101], as shown in Figure 10(c). This modification also allows non-FIFO
channels. In practice, checkpoint indices can serve as the checkpoint-request mes-
sages: a checkpoint is triggered when the receiver's local checkpoint index is lower
than the piggybacked checkpoint index [50,154].

3.2.3 Synchronized Checkpoint Clocks

Loosely synchronous clocks can facilitate checkpoint coordination [42,143,177]. More
specifically, loosely-synchronized checkpoint clocks can trigger the local checkpointing
actions of all participating processes at approximately the same time without the need
of broadcasting the checkpoint-request message by a coordinator. A process takes a
checkpoint and waits for a period that equals the sum of the maximum deviation between
clocks and the maximum time to detect a failure in another process in the system. The
process can be assured that all checkpoints belonging to the same coordination session
must have been taken without the need of global-Checkpoint-done messages. If a
failure occurs, it has to be detected within the specified time and the protocol is aborted.
To guarantee checkpoint consistency, either the sending of messages is blocked for

13

Initiator Initiator Initiator

\ \ checkpoint_request \ \checkpoint_request \ \checkpoint_request

Po
'0,xm \ \ c'0,*"\ \ \ C0,xl

(a) (b) (c)

Figure 10: Nonblocking coordinated checkpointing, (a) Checkpoint inconsistency;
(b) FIFO channels; (c) non-FIFO channels (short dashed line represents piggybacked
checkpoint-request).

the duration of the protocol, or the checkpoint indices can be piggybacked to avoid
blocking as explained before.

3.2.4 Minimal Checkpoint Coordination

It is possible to reduce the number of processes involved in a coordinated check-
pointing session. Only those processes that have communicated with the checkpoint
initiator either directly or indirectly since the last checkpoint need to take new check-
points [21,100]. The following two-phase protocol is due to Koo and Toueg [100].
During the first phase, the checkpoint initiator sends a request to all processes with
which it has communicated since the last checkpoint. Upon receiving such request,
each process sends a similar message to all processes it has communicated with since
the last checkpoint and so on, until all processes are identified. During the second
phase, all processes identified in the first phase take a checkpoint. The result is a
consistent checkpoint that involves only the processes that participate. Interprocess
communication has to be blocked during this protocol as explained before. In Koo and
Toueg's original scheme, if any of the involved processes is not able or not willing to
take a checkpoint, then the entire coordination session is aborted; Kim and Park [93]
proposed an improved scheme that allows the new checkpoints in some subtrees to be
committed while the others are aborted.

14

3.3 Communication-induced Checkpointing

3.3.1 Overview

Communication-inducedcheckpointing [81] is another way to avoid the domino effect
in uncoordinated checkpointing protocols. A system-wide constraint on the check-
point and communication pattern is specified to guarantee recovery line progression.
Sufficient information is piggybacked on each message so that the receiver can ex-
amine the information prior to processing the message. If processing the message
would violate the specified constraint, the receiver is forced to take a checkpoint before
the processing. In contrast with coordinated checkpointing, no special coordination
messages are exchanged. We distinguish two types of communication-induced check-
pointing: model-based checkpointing maintains certain checkpoint and communication
structure that is provably domino effect-free, and index-based coordination enforces
the consistency between checkpoints with the same index.

3.3.2 Model-based Checkpointing

Several domino effect-free checkpoint and communication models have been pro-
posed in the literature. Russell [147] proved that if within every checkpoint interval
all message-receiving events precede all message-sending events, then the system is
domino effect-free. Such a model, called an MRS model, can be maintained by taking
an additional checkpoint before every message-receiving event that is not separated
from its previous message-sending event by a checkpoint [2,184]. In the Programmer-
Transparent Coordination (PTC) scheme [98], Kim et al. proved that the domino effect
can be eliminated if each process takes an additional checkpoint before processing any
message that will cause the process to depend on a checkpoint that it did not previously
depend on. Wu and Fuchs [197,198] proposed that taking a checkpoint immediately
after every message-sending event can eliminate rollback propagation and therefore the
domino effect. Some heuristics have also been developed to reduce rollback propaga-
tion [188,199], although they in general do not guarantee domino effect-free recovery.

In addition to achieving domino effect-free recovery, another branch of research
work aims at providing the benefits of piecewise determinism (such as efficient output
commit and recovery) without requiring applications to satisfy the piecewise determin-
istic model. It is based on the observation that piecewise determinism can be modeled as
having a logical checkpoint [91,179,190] before every nondeterministic event. There-
fore, checkpoint-based rollback recovery can mimic piecewise determinism by taking
an actual checkpoint before every nondeterministic event. The main challenge is how
to reduce the number of checkpoints while still preserving desirable properties. It has
been shown that [182] the three domino effect-free models described in the previous
paragraph can all be viewed as special cases of a more general Fixed-Dependency-
After-Send (FDAS) model: the receiving of any message that causes its receiver Pj to
causally depend on a checkpoint c,^ for the first time must precede any sending of
messages from the same checkpoint interval. The main advantage of the FDAS model
is that it allows rollback dependency to be tracked on-line, a property that leads to many

15

desirable features of the piecewise deterministic model. The ability to track rollback
dependency is also preserved in the adaptive checkpointing algorithm of Baldoni et
al. [16]. In their scheme, an additional boolean vector and another boolean matrix are
piggybacked on each message. These data structure allow a receiver to determine if
an additional checkpoint needs to be taken to prevent some other checkpoints from
becoming useless, i.e., not belonging to any consistent global checkpoints [199].

3.3.3 Index-based Coordination

Checkpoint coordination can also be considered as a mechanism to be incorporated
into an uncoordinated checkpointing protocol to eliminate the domino effect. A naive
way to employ checkpoint coordination is to start a coordination session whenever
a local checkpoint is taken. Alternatively, inconsistency between checkpoints of the
same index can be avoided in a lazy fashion if checkpoint index is piggybacked on
each message. Upon receiving a message with piggybacked index greater than the
local index, the receiver is forced to take a checkpoint before processing the message
to avoid inconsistency at the last minute [33,101].

The lazy coordination protocol described above has two disadvantages. First, the
induced checkpoints push the checkpoint indices at some processes higher which may
cause more induced checkpoints to be taken and, in the worst case, result in an ex-
cessive number of induced checkpoints. Second, the additional checkpoint overhead
is determined by the checkpoint and communication pattern and is not otherwise con-
trollable. Wang and Fuchs [189] introduced the notion of laziness (a positive integer)
to provide a tradeoff between the checkpoint overhead and rollback distance. When
a system specifies the laziness to be Z, only checkpoints with the same index which
is a multiple of Z are required to be consistent. By increasing the laziness, additional
checkpoint overhead can be reduced at the expense of a potentially larger rollback
distance. Manivannan and Singhal [119] presented a quasi-synchronous checkpointing
algorithm to reduce the number of forced checkpoints. Every process increments its
next-to-be-assigned checkpoint index at the same regular time interval to keep the index
of the latest checkpoint of each process close to each other. A scheduled checkpoint is
skipped if the next-to-be-assigned index is already taken by an induced checkpoint.

4 Log-Based Rollback-Recovery

Log-based rollback-recovery assumes a piecewise deterministic system model in which
a process execution consists of a sequence of deterministic state intervals. Each interval
starts with the occurrence of a nondeterministic event. Such an event can be the receipt
of a message from another process or an internal event to the process. Sending a
message, however, is not an event in this model. For example, in Figure 5, the
execution of process Po would be a sequence of four deterministic intervals. The first
one starts with the creation of the process, while the remaining three start by the receipt
of messages mo, rrn, and m7, respectively.

16

Log-based rollback-recovery protocols save information about the nondeterministic
events on stable storage in addition to checkpointing. During recovery, the events in
the log are replayed at the same points they occurred during the pre-failure execution.
Thus, the failed process reconstructs its pre-failure execution during recovery since the
execution within each deterministic interval depends on the nondeterministic event that
started it.

Log-based rollback-recovery contrasts checkpointing schemes in one important
way. In checkpointing schemes, the system restarts one or more processes after a
failure to restore a consistent state. The execution of a failed process during recovery
is not necessarily identical to its pre-failure execution. This property simplifies the
implementation of failure-recovery but makes it difficult for the system to interact
efficiently with the outside world. Log-based rollback-recovery does not have this
problem and can interact more efficiently with the outside world.

Log-based rollback-recovery protocols have been traditionally called "message
logging protocols." The association of nondeterministic events with messages is rooted
in the earliest systems that implemented this style of recovery [23,28]. These systems
translated nondeterministic events into messages according to the CSP model [71].
It is important however to emphasize that these protocols are not only limited to
message-passing systems. They have found applications in other style of interprocess
communication, such as in distributed shared memory systems [37,170,197].

Log-based rollback-recovery protocols come in three major variants: pessimistic
logging, optimistic logging, and causal logging protocols. They differ in their failure-
free performance overhead, latency of output commit, simplicity of recovery and
garbage collection, and the potential for rolling back surviving processes.

4.1 Pessimistic Logging

4.1.1 Overview

The basic assumption in pessimistic logging systems is that a failure can occur after
every nondeterministic event in the computation. This assumption is "pessimistic"
since failures are rare in reality. Pessimistic logging systems arrange for the information
about each nondeterministic event to be logged before the event is allowed to affect the
computation. For example, a message is not delivered to the application program until
it is logged. This form of logging is often called synchronous logging. Each process
also takes periodic checkpoints to limit the amount of work that has to be repeated in
execution replay during recovery. Should a failure occur, the application program is
restarted from the most recent checkpoint and the log of events is replayed to recreate
the execution. Because the execution is deterministic between nondeterministic events,
an exact replay of the pre-failure execution is produced.

Consider the example in Figure 11. During failure-free operation the logs of
processes PQ, Pi. and Pi are {m0, m,4,m7}, {mi, m^, me}, and {mi, ms}, respectively.
If processes Pi and Pi fail as shown, they respectively restart from checkpoints B and C.
Each replays its message log and because the execution is deterministic, each restores

17

its pre-failure execution and both will be consistent with the state of Po including its
receipt of message m-] from Pi.

Maximum
recoverable

state

Figure 11: Pessimistic logging.

The state of each process in a pessimistic logging system is always recoverable.
This property has four advantages:

• A process can commit output to the outside world without running a special
protocol.

• Recovery is simplified because the effects of a failure are confined only to the
processes that fail. Functioning processes continue to operate and never become
orphans. This property is true because a process always recovers to the state that
included its most recent interaction with any other process or the outside world.

• Processes restart from their most recent checkpoint upon a failure, therefore
limiting the extent of execution that has to be replayed. Thus, the frequency
of taking checkpoints can be determined by trading off the desired runtime
performance with the desired protection of the execution.

• There is no need to run a complex garbage collection protocol for the recovery
information. Information about nondeterministic events that occurred before the
most recent checkpoint and older checkpoints can always be reclaimed since they
will never be needed for recovery.

The price to be paid for these advantages is a performance penalty incurred by syn-
chronous logging. Implementations of pessimistic logging must therefore resort to
special techniques to reduce the effects of synchronous logging on performance.

18

4.1.2 Techniques for Reducing Performance Overhead

The simplest form of pessimistic logging is to locally save in stable storage information
about each event as it occurs and before it affects the application program [72,73]. This
form of logging potentially has a high performance overhead but allows each host to
recover independently which is desirable in practical systems [74].

Special hardware that assists logging can lower the overhead. This special hardware
can take the form of a fast non-volatile semiconductor memory to implement stable
storage [18,163]. Synchronous logging in such an implementation would be orders
of magnitude cheaper than with a traditional implementation of stable storage using
magnetic disk devices. Therefore, performance is only slightly affected. Another
form of hardware support is to use a special bus that guarantees atomic logging of all
messages exchanged in the system [29,140]. Such hardware support ensures that the
log of one machine is automatically stored on a designated backup without blocking
the execution of the application program. This scheme, however, requires that all
nondeterministic events be converted into external messages [23,29].

Some pessimistic logging systems reduce the overhead of synchronous logging
without relying on hardware. For example, the sender-based message logging (SBML)
protocol logs each message at the sender in volatile memory [88]. A receiver of a
message sends an acknowledgment to the sender including the order in which the
message is received. The sender includes the receipt order in the log. The log thus
contains the information necessary to help the receiver recover from future failures
should they occur. This scheme avoids the overhead of accessing stable storage but it
can tolerate only one failure and cannot accommodate nondeterministic events internal
to a process. Extensions to this technique can tolerate more than one failure in special
network topologies [91].

4.1.3 Relaxing Logging Atomicity

The performance overhead of pessimistic logging can be reduced by delivering a
message or an event and deferring its logging until the host communicates with another
host or with the outside world [77,88]. In the example of Figure 11, process Po may
defer the logging of message rrn and m7 until it needs to communicate with another
process or the outside world. Thus, these messages are allowed to affect process P$
but this effect is local - no other process or the outside world can see it until the
messages are logged. The observed behavior of each process is the same as with an
implementation that logs events before delivering them to applications. Event logging
and delivery are not performed in one atomic operation in this variation of pessimistic
logging. This scheme reduces overhead because several events can be logged in one
operation, reducing the frequency of synchronous access to stable storage. Latency
of interprocess communication and output commit are not reduced since a logging
operation may often be needed before sending a message.

Systems that decouple logging of an event from its delivery may be susceptible to
losing the last messages that were delivered before a failure (an instance of the "last

19

message problem" [124]). This problem occurs only in systems where the communica-
tion channels are assumed to be reliable. Consider the example in Figure 11. Assume
process PQ fails after delivering m* and my but before logging them. Process PQ must
receive these messages during recovery to be consistent with process P\. Some proto-
cols that rely on the receiver to log the messages cannot retrieve these messages [77].
This problem does not occur in protocols that rely on sender logging or those that do
not assume reliable communication channels [50,89].

4.2 Optimistic Logging

4.2.1 Overview

Unlike pessimistic logging protocols, optimistic logging protocols [87,89,91,134,157,
168] log messages asynchronously. These protocols make the optimistic assumption
that logging will complete before a failure occurs. A volatile log contains information
about the events to be logged, and is flushed to stable storage periodically. Optimistic
logging does not require the application to block and thus has better failure performance.
However, this advantage comes at the expense of more complicated recovery, garbage
collection, and output commit compared with pessimistic logging. Should a process
fail, the information in the volatile log will be lost and cannot be used during recovery.
The execution that depends on the lost information cannot be recovered. Furthermore,
if the failed process has sent a message during any of this unrecoverable execution,
the receiver of the message then becomes an orphan process and must roll back to
"unreceive" this message. For example, suppose Pi in Figure 12 fails before message
m$ is logged to stable storage. Process P\ then becomes an orphan process and must
roll back to unreceive the orphan message m^. The rollback of P\ further forces PQ

to roll back to unreceive my. Optimistic logging protocols must therefore perform
dependency tracking during failure-free execution. Upon a failure, the dependency
tracking information is used to calculate and recover the maximum consistent state
of the entire system, in which no process is in an orphan state. The above failure
scenario also illustrates that optimistic logging protocols require a nontrivial garbage
collection algorithm. While pessimistic logging protocols need only keep the most
recent checkpoint of each process, optimistic logging protocols may need to keep
additional checkpoints. In the example, process Pi's restart from checkpoint B instead
of the most recent checkpoint D due to Pi's failure. Finally, since messages are logged
asynchronously, output commit in optimistic logging protocols generally requires multi-
host coordination to force the logging progress at some processes to ensure that no
failure scenario can revoke the output. For example, if process Po needs to commit
output at state X, it must log messages m4 and my to stable storage and ask Pi to log
mi and m$.

20

Figure 12: Optimistic logging.

4.2.2 Synchronous vs. Asynchronous Recovery

Recovery in optimistic logging protocols can be either synchronous or asynchronous.
In synchronous recovery [157], all processes run a recovery protocol to compute the
maximum recoverable system state based on dependency and logged information,
and then perform the actual rollbacks. During failure-free execution, each process
increments its state interval index at the beginning of each state interval. Dependency
tracking can be either direct or transitive. In direct dependency tracking [89,157], the
current index of a message sender is piggybacked on each outgoing message to allow
the receiver to record the dependency directly caused by the message. These direct
dependencies can then be assembled at recovery time to obtain complete dependency
information. Alternatively, transitive dependency tracking [157] can be used: each
process P,- maintains a size-TV vector TDi where TD{[i] is Pi's current state interval
index, and TDi\j], j ^ i, records the highest index of any state interval of Pj on
which Pi depends. Transitive dependency tracking generally incurs a higher failure-
free overhead for piggybacking and maintaining the dependency vectors, but allows
faster output commit and recovery [87].

In asynchronous recovery, a failed process restarts by sending a rollback announce-
ment broadcast [160] (or recovery message [168]) to start a new incarnation. Upon
receiving a rollback announcement, a process rolls back if it detects that it has become
an orphan with respect to that announcement, and then broadcast its own rollback an-
nouncement. Since rollback announcements from multiple incarnations of the same
process may coexist in the system, each process in general needs to track the de-
pendency of its state on every incarnation of every other process to correctly detect
orphaned states. Strom and Yemini [168] introduced the following blocking at some
message receiving events to allow tracking dependency on only one incarnation of
each process: before process Pi receives any message carrying a dependency on an
unknown incarnation of process Pj, Pi must first receive rollback announcements from
Pj to verify that Pi's current state does not depend on any invalid state of Pj's previous

21

incarnations. To eliminate the blocking and achieve completely asynchronous recov-
ery, the protocol by Smith et al. [160] piggybacks all rollback announcements known
to a process on every outgoing message. The protocol was later improved to require
piggybacking only a provably minimum amount of information [161].

Another issue in asynchronous recovery protocols is the possibility of exponential
rollbacks: a single failure in the system may cause a process to roll back an exponential
number of times [157]. Figure 13 gives an example, where each integer pair [i,x]
represents the xih state interval of the iih incarnation of a process. Suppose Po fails
and loses its interval [1,2]. When Po's rollback announcement ro reaches Pi, Pi rolls
back to interval [2,3] and broadcast another rollback announcement n. If r\ reaches Pz
before ro does, Pz will first roll back to [4,5] in response to r\, and later roll back again
to [4,4] upon receiving ro. By generalizing this example, we can construct scenarios in
whichprocessPj.i > 0, rolls back 2*'_1 times inresponse to Po'sfailure. It was pointed
out that Strom and Yemini's original protocol suffers from the exponential rollbacks
problem [157]. Three approaches have been proposed to eliminate the problem by
ensuring that any process will roll back at most once in response to a single failure. The
protocol by Lowry and Strom [117] piggybacks the original rollback announcement
from the failed process on every subsequent rollback announcement that it triggers.
For example, in Figure 13, process Pi piggybacks ro on r\. Damani and Garg [45]
reduced the number of rollback announcements based on the important observation
that announcing only failures, rather than all rollbacks, suffices to detect orphans. In
other words, rollback announcements generated by non-failed rolled-back processes
are always redundant with respect to those generated by failed processes in terms of
finding the maximum recoverable state. If rollback announcements are only generated
by failed processes, messages like n in Figure 13 no longer exist and so exponential
rollbacks will not happen. The recovery protocol by Smith et al. [160,161] also avoids
exponential rollbacks because all rollback announcements are piggybacked on every
application message and so always reach a process at the same time.

Figure 13: Exponential rollbacks.

22

4.3 Causal Logging

4.3.1 Overview

Causal logging has the failure-free performance advantages of optimistic logging with-
out making optimistic assumptions. It avoids synchronous access to stable storage
except during output commit. Causal logging also retains most of the advantages of
pessimistic logging. It allows each process to commit output independently and isolates
it from the effects of failures that occur in other processes. Furthermore, causal logging
limits the rollback of any failed process to the most recent checkpoint on stable storage.
This reduces the storage overhead and the amount of work at risk. These advantages
come at the expense of a more complex recovery protocol.

The basic invariant in causal logging is that information about each event that
causally precedes the state of a process is either fully logged or is available locally
to the process. Consider the example in Figure 14(a). While messages ras and rri(,
may be lost upon the failure, process Po at state X would have information about the
nondeterministic events that precede its state in causal order according to Lamport's
happened-before relation [102]. These events consist of the receipts of messages mo,
mi, 77i2, ra3 and 7714. The information about each of these nondeterministic events is
either logged on stable storage or is available locally to process P0. Thus, process PQ

will be able to guide the recovery of Pi and P2 because it has the order in which Pi
should replay messages mi and ra3 to reach state Y, and the order in which P% should
replay message ra2 to reach state Z. Such messages can be replayed from the sender
log of Po or will be regenerated during the recovery of Pi and P2.

Each process maintains information about all the events that have causally affected
its state. This information acts as an insurance to protect the process from the failures
that occur in other processes. It also allows the process to make its state recoverable
by simply logging the information available locally. Thus, a process does not need to
run a multi-host protocol to commit output.

4.3.2 Tracking Causality

The Manetho protocol [51] propagates the causal information in an antecedence graph.
The antecedence graph provides every process in the system with a complete history of
the nondeterministic events that have causal effects on its state. The graph has a node
representing each nondeterministic event that precedes the state of a process, and the
edges correspond to the happened-before relation. Figure 14(b) shows the antecedence
graph of process P0 of Figure 14(a) at state X. During failure-free operation, each
process piggybacks on each application message the receipt orders of its direct and
transitive antecedents, ie. its local antecedence graph. The receiver of the message will
record these receipt orders in its volatile log.

In practice, carrying the entire graph on each application message may lead to an
unacceptable overhead. Fortunately, each message carries a graph that is a superset
of the one piggybacked on the previous message sent from the same host. This fact
can be used in practical implementations to reduce the amount of information carried

23

Maximum
recoverable

state

X^'

(b)

Figure 14: Causal logging, (a) Maximum recoverable states and (b) antecedence graph
ofPo at state X.

on application messages. Thus, any message between two hosts p and q carries only
the difference between the graphs piggybacked on the previous message exchanged
between these two hosts. Furthermore, if p has recently received a message from q, it
can exclude the graph portions that have been piggybacked on that message. Process q
already contains the information in these excluded portions, and therefore transmitting
them serves no purpose. Other optimizations are also possible but depend on the
semantics of the communication protocol [48]. An implementation of this technique
shows that it has very low overhead in practice [48].

Further reduction of the overhead is possible if the system is willing to tolerate a
number of failures that is less than the total number of processes in the system. This
observation is the basis of Family Based Logging protocols (FBL) that are parameterized
by the number of tolerated failures [6,7]. The basis of these protocols is that to tolerate

24

/ process failures, it is sufficient to log each nondeterministic event in the volatile
store of / + 1 different hosts. Sender-based logging is still used to support message
replay during recovery. The event information is piggybacked on application messages.
However, unlike Manetho, propagation of information about an event stops when it has
been recorded in / + 1 hosts. For f < n, where n is the number of processes, FBL
protocols do not access stable storage except for checkpointing. Reducing access to
stable storage in turn reduces performance overhead and implementation complexity.
Applications pay only the overhead that corresponds to the number of failures they are
willing to tolerate. An implementation for the protocol with / = 1 confirms that the
performance overhead is very small [6]. The Manetho protocol can be considered a
member of FBL protocols corresponding to the case of / = n.

4.4 Comparison

Various rollback-recovery protocols offer different tradeoffs with respect to perfor-
mance overhead, latency of output commit, storage overhead, ease of garbage col-
lection, simplicity of recovery, freedom from domino effect, freedom from orphan
processes, and the extent of rollback. Table 1 summarizes the comparison between
the different variations of rollback-recovery protocols. Uncoordinated checkpointing
generally has the lowest failure-free overhead but suffers from potential domino ef-
fect. This can be avoided by paying certain degree of performance overhead either to
coordinate checkpoints or to log messages under the assumption of piecewise deter-
minism. The PWD assumption also has the additional advantages of allowing faster
output commits and orphan-free recovery. Since garbage collection and recovery both
involve calculating a recovery line, they can be performed by simple procedures under
coordinated checkpointing and pessimistic logging, both of which have a predeter-
mined recovery line during failure-free execution. The extent of any potential rollback
determines the maximum number of checkpoints each process may need to retain. Un-
coordinated checkpointing can have unbounded rollbacks, and a process may need to
retain up to N checkpoints if the optimal garbage collection algorithm is used [186].
Several checkpoints may need to be kept under optimistic logging, depending on the
logging progress.

5 Implementation Issues

5.1 Overview

While there is a rich body of research on the algorithmic aspects of rollback-recovery
protocols, reports on experimental prototypes or commercial implementations are rela-
tively scarce. The few experimental studies available have shown that buildingrollback-
recovery protocols with low failure-free overhead is feasible. These studies also indicate
that the main difficulty in implementing these protocols lies in the complexity of han-
dling recovery [48]. It is interesting that all commercial implementations of message

25

Uncoordinated
Checkpointing

Coordinated
Checkpointing

Pessimistic
Logging

Optimistic
Logging

Causal
Logging

PWD Assumed? No No Yes Yes Yes

Overhead Low Higher Highest Higher Higher

Output Commit Not possible Very slow Fastest Slow Fast
Checkpoint/process Several 1 1 Several 1
Garbage Collection Complex Simple Simple Complex Complex

Recovery Complex Simple Simple Complex Complex
Domino Effect Possible Not possible Not possible Not possible Not possible
Orphans Possible Possible Not possible Possible Not possible

Rollback Extent Unbounded Last
checkpoint

Last
checkpoint

Some previous
checkpoint

Last
checkpoint

Table 1: Comparison between different flavors of rollback-recovery protocols.

logging use pessimistic logging because it simplifies recovery [29,74].
Several recent studies have also challenged some premises which many recovery

protocols rely on. Many of these protocols have been incepted in the 1980's. Dur-
ing that era, processor speed and network bandwidth were such that communication
overhead was deemed too high, especially when compared to the cost of stable storage
access [26]. In such platforms, a protocol that requires multi-host coordination incurs
a large overhead due to the necessary control messages that carry out the protocol. A
protocol that does not require such communication overhead at the expense of more
stable storage access would perform better in such platforms. Recently, processor speed
and network bandwidth have increased dramatically, while the speed of stable storage
access has remained relatively the same.3 This change in the equation suggests a fresh
look at the premises of many rollback-recovery protocols. Specifically, recent results
have shown that [53,106,135]:

• Stable storage access is now the major source of overhead in checkpointing
systems. Communication overhead is much lower in comparison. Such changes
favor coordinated checkpointing schemes over message logging or independent
checkpointing systems, as they require less access to stable storage and are
simpler to implement.

• The case for message logging has become the ability to interact with the outside
world, instead of reducing the overhead [53]. Message logging systems can
implement efficient protocols for committing output and logging input that are
not possible in checkpoint-only systems.

3While semiconductor-based stable storage is becoming more widely available, the size/cost ratio is too
low compared to disk-based stable storage. It appears that for some time to come, disk-based systems will
continue to be the medium of choice for storing the large files that are needed in checkpointing and logging
systems.

26

• Recent advances have shown that arbitrary forms of nondeterminism can be
supported at a very low overhead in logging systems. Nondeterminism was
deemed one of the complexities inherent in message logging systems.

In the remainder of this section, we address these issues in some detail.

5.2 Checkpointing

All available studies have shown that writing the state of a process to stable storage is
an important contributor to the performance overhead [135]. The simplest way to save
the state of a process is to suspend it, save its address space on stable storage, and then
resume it [92,99,106,114,159,194]. This scheme can be costly for programs with
large address spaces if stable storage is implemented using magnetic disks as it is the
custom. Several techniques exist to reduce this overhead.

5.2.1 Reducing Checkpointing Overhead

Concurrent checkpointing techniques greatly reduce the overhead of saving the state
of a process [109-111]. Concurrent checkpointing does not suspend the execution of
the process while the checkpoint is saved on stable storage. It relies on the memory
protection hardware that is commonly available in modern computer architectures.
The address space is protected from further modification at the start of a checkpoint
and the memory pages are saved to disk concurrently with the program execution.
If the program attempts to modify a page, it will incur a protection violation. The
checkpointing system copies the page into a separate buffer from which it is saved on
stable storage. The original page is unprotected and the application program is allowed
to resume.

Adding incremental checkpointing to concurrent checkpointing can further reduce
the overhead [50]. Incremental checkpointing avoids rewriting portions of the process
states that do not change between consecutive checkpoints. It can be implemented
by using the dirty-bit of the memory protection hardware or by emulating a dirty-
bit in software [12]. A public domain package implementing these techniques is
available [136].

Incremental checkpointing can also be extended over several processes. In this
technique, the system saves the computed parity or some function of the memory pages
that are modified across several processes [137]. This technique is very similar to parity
computation in RAID disk systems. The parity pages can be saved in volatile memory
of some other processes thereby avoiding the need to access stable storage. The storage
overhead of this method is very low, and it can be adjusted depending on how many
failures the system is willing to tolerate [137].

5.2.2 System-level versus User-level Implementations

Support for checkpointing can be implemented in the kernel [48,86,135], or it can be
implemented by a library linked with the user program [62,106,136,159,165,191].

27

Kernel-level implementations are more powerful because they can also capture kernel
data structures that support the checkpointed process. However, these implementations
are necessarily not portable.

Checkpointing can also be implemented in user level. System calls that manipulate
memory protection such as mprotect of UNIX can emulate concurrent and incremental
checkpointing. The fork system call of UNIX can implement concurrent checkpointing
if the operating system implements fork using copy-on-write protection [62]. User-
level implementations however cannot access kernel's data structures that belong to the
process such as open file descriptors and message buffers, but these data structures can
be emulated at user level [149,191].

5.2.3 Compiler Support

A compiler can be instrumented to generate code that supports checkpointing [108].
A compiled program would contain code that decides when and what to checkpoint.
The advantage of this technique is that the compiler can decide on the variables that
must be checkpointed, therefore avoiding saving unnecessary data. For example,
dead variables within a program are not saved in a checkpoint though they have been
modified. Furthermore, the compiler may decide the points during program execution
where the amount of state to be saved is small.

Despite these promising advantages, there are several difficulties with this approach.
It is generally undecidable to find the point in program execution most suitable to take
a checkpoint. There are, however, several heuristics that can be used. The programmer
could provide hints to the compiler about where checkpoints could be inserted or what
data variables should be stored [24,138,152]. The compiler may also be trained by
running the application in an iterative manner and observing its behavior [108]. The
observed behavior could help decide the execution points where it would be appropriate
to insert checkpoints. Compiler support could also be simplified in languages that
support automatic garbage collection [9]. The execution point after each major garbage
collection provides a convenient place to take a checkpoint at a minimum cost.

5.2.4 Coordinated versus Uncoordinated Checkpointing

Many checkpointing protocols were incepted at a time where the communication over-
head far exceeded the overhead of accessing stable storage [26]. Furthermore, the
memory available to run processes tended to be small. These tradeoffs naturally fa-
vored uncoordinated checkpointing schemes over coordinated checkpointing schemes.
Current technological trends however have reversed this tradeoff.

In modern systems, the overhead of coordinating checkpoints is negligiblecompared
to the overhead of saving the states [50,125]. Using concurrent and incremental
checkpointing, the overhead of either coordinated or uncoordinated checkpointing is
essentially the same. Therefore, uncoordinated checkpointing is not likely to be an
attractive technique in practice given the negligible performance gains. These gains
do not justify the complexities of finding a consistent recovery line after the failure,

28

the susceptibility to the domino effect, the high storage overhead of saving multiple
checkpoints of each process, and the overhead of garbage collection.

5.3 Communication Protocols

Rollback-recovery complicates the implementation of protocols used for interprocess
communications. Some protocols offer the abstraction of reliable communication
channels such as connection-based protocols like TCP [139] or RPC-style communica-
tions [27]. Alternatively, other protocols offer the abstraction of an unreliable datagram
service such as UDP [139]. Each type of abstraction requires additional support to
operate properly across failures and recoveries.

5.3.1 Location-Independent Identities and Redirection

For all communication protocols, a rollback-recovery system must mask the actual
identity and location of a process or a remote port from the application program. This
masking is necessary to prevent any application program from acquiring a dependency
on the location of a certain process. Such a dependency would make it impossible to
restart a process on a different machine after a failure. A solution to this problem is to
assign a location-independent, logical identifier to each process in the system [176]. The
system translates the logical identifier to the actual network address of the process in an
application-transparent manner. This scheme also allows the system to appropriately
redirect communication to a restarting process after a failure.

5.3.2 Reliable Channel Protocols

Identity masking and communication redirection after a failure are sufficient for com-
munication protocols that offer the abstraction of an unreliable channel. Protocols that
offer the abstraction of reliable channels require additional support. These protocols
usually generate a timeout upcall to the application program if the process at the other
end of the channel has failed. These timeouts should be masked since the failed pro-
gram will soon restart and resume computation. If such upcalls are allowed to affect
the application, then the abstraction of a reliable system is no longer upheld. The
application will have to encode the necessary support to communicate with the failed
process after it recovers.

Masking timeouts should also be coupled with the ability of the protocol implemen-
tation to reestablish the connection with the restarting process (possibly restarting on a
different machine). This support includes the ability to clean up the old connection in
an orderly manner, and to establish a new connection with the restarting host. Further-
more, messages retransmitted as part of the execution replay of the remote host must
be identified and if necessary suppressed. This requires the protocol implementation to
include a form of sequence number that is only used for this purpose.

Recovering in-transit messages that are lost due to a failure is another problem
for reliable communication protocols. In TCP/IP communication style, for instance, a

29

message is considered delivered once an acknowledgment is received from the remote
host. The message itself may linger in the kernel's buffer for a while before the
receiving process consumes it. If this process fails, the in-transit messages must be
resent to preserve the semantics of the reliable communication channel. Messages must
be saved at the sender side for possible retransmission during recovery. This step can
be combined in a system that performs sender-based message logging as part of the log
maintenance. In other systems that do not log messages or log messages at the receiver,
the copying of each message at the sender side introduces overhead and complexity.
The complexity is due to the need for executing some garbage collection algorithm
with other sites to reclaim the volatile storage.

5.4 Message Logging

Message logging introduces two sources of overhead. First, each message must in
general be copied in the local memory of the process. Second, the volatile log must be
flushed on stable storage. The first source of overhead may directly affect communica-
tion throughput and latency. This is especially true if the copying occurs in the critical
path of the interprocess communication protocol. In this respect, sender-based logging
is considered more efficient than receiver-based logging because the copying can take
place after sending the message over the network. Additionally, the system may com-
bine the message logging with the implementation of the communication protocol and
share the message log with the transmission buffers. This scheme would avoid the extra
copying of the message. Logging at the receiver is more expensive because it is in the
critical path and no such sharing between the message logging and the communication
protocol logic can be implemented.

Another optimization for sender-based logging systems is to use copy-on-write to
avoid making extra-copying. This scheme works well in systems where broadcast
messages are implemented using several point-to-point messages. In this case, copy-
on-write will allow the system to have one copy for identical messages and thus reduce
the storage and performance overhead of logging. No similar optimization can be
performed in receiver-based systems [53].

5.4.1 Message Logging and Coordinated Checkpointing

Message logging has been traditionally presented as a scheme that allows the system
to use uncoordinated checkpointing with no domino effect. However, there is nothing
that prevents the system from using coordinated checkpointing in a message logging
system [53]. Such a scheme has many advantages with respect to performance and
simplicity. It retains the ability to perform fast output commit as in log-based sys-
tems. It also retains the simplicity of recovery and garbage collection that comes from
coordinated checkpointing. Furthermore, it allows a sender-based logging system to
avoid flushing the logs on stable storage, reducing the overhead and complexity of
maintaining logs on stable storage. The combination of coordinated checkpointing and
message logging has been shown to outperform one with uncoordinated checkpointing

30

and message logging [53]. Therefore, the purpose of logging should no longer be the
avoidance of taking uncoordinated checkpointing but the desire for enabling fast output
commit.

5.5 Stable Storage
Magnetic disks have been the medium of choice for implementing stable storage.
Although slow, their storage capacity and low cost combination cannot be matched
with other alternatives. An implementation of a stable storage abstraction on top of a
conventional file system may not be the best choice, however. Such an implementation
will not generally give the performance and reliability needed to implement stable
storage [48]. The KifLog package offers a log abstraction on top of which support
for checkpointing and message logging can be implemented. The package runs in
conventional UNIX systems and bypasses the UNIX file system by accessing the disk
in raw mode [146].

There have been also several attempts at implementing stable storage using non-
volatile semiconductor memory [18]. Such implementations do not have the perfor-
mance problems associated with disks. The price and the small storage capacity remain
two problems that limit their wide acceptance.

5.6 Support for Nondeterminism

Nondeterminism occurs when the application program interacts with the operating
system through system calls and upcalls. Log-based systems must track the non-
determinism during failure-free operation and replays it with the same effect during
recovery.

5.6.1 System Calls

System calls in general can be classified into three types. Idempotent system calls
are those that return deterministic values whenever executed. Examples include calls
that return the user identifier of the process owner. These calls do not need to be
logged. A second class of calls consists of those that must be logged during failure-
free operation but should not be re-executed during execution replay. The result from
these calls should simply be replayed to the application program. These calls include
those that inquire about the environment, such as getting the current time of day. Re-
executing these calls during recovery might return a different value that is inconsistent
with the pre-failure execution. Therefore, the previous result is simply returned to the
application. The last type of system calls are those that must be logged during failure-
free operation and re-executed during execution replay. These calls generally modify
the environment and therefore they must be re-executed to re-establish the environment
changes. Examples include calls that allocate memory or create processes. Ensuring
that these calls return the same values and generate the same effect during reexecution
can be very complex [48,149].

31

5.6.2 Asynchronous signals

Different flavors of logging have been suggested with different performance and re-
silience characteristics [7]. These protocols, however, do not support general forms
of nondeterminism that are found in practice. It is inefficient for example to track the
nondeterminism resulting from software interrupts such as UNIX signals. Such signals
must be applied at the same execution points during replay to reproduce the same
result. Systems that support this form of nondeterminism simply take a checkpoint
after the occurrence of each signal, which can be very expensive [48]. Alternatively,
the system may convert these asynchronous signals to synchronous messages such as
in Targon/32 [29], or it may queue the signals until the application polls for them
such as in Delta-4 [22,39]. Both alternatives convert asynchronous event notifications
into synchronous ones, which may not be suitable or efficient for many applications.
Such solutions also require substantial modifications to the operating system or the
application program.

Another example of nondeterminism that is difficult to track is shared memory
manipulation in multi-threaded applications. Reconstructing the same execution during
replay requires the same interleaving of shared memory accesses by the various threads
as in the pre-failure execution. Systems that support this form of nondeterminism
supply their own sets of locking primitives, and require applications to use them for
protecting access to shared memory [62]. The primitives are instrumented to insert
an entry in the log identifying the calling thread and the nature of the synchronization
operation [62]. However, this technique has several problems. It makes shared memory
access expensive, and may generate a large volume of data in the log. Furthermore, if
the application does not adhere to the synchronization model (due to a programmer's
error, for instance), execution replay may not be possible.

A promising technique for solving this problem is to use instruction counters to
efficiently track nondeterminism due to asynchronous software interrupts and multi-
threading on single-processor systems. An instruction counter is a register that is
decremented upon the execution of each instruction. The hardware generates an ex-
ception when the register content becomes 0. An Instruction counter can be used in
two modes. In one mode, the register is loaded with the number of instructions to be
executed before a breakpoint occurs. After the CPU executes the specified number
of instructions, an exception is generated and propagated to a pre-specified handler.
This mode is useful in setting breakpoints efficiently, such as during debugging. In the
second mode, the instruction counter is loaded with the maximum value it can hold.
Execution proceeds until an event of interest occurs, at which time the content of the
counter is sampled, and the number of instructions executed since the time the counter
was set is computed. The use of instruction counters has been suggested for debugging
shared memory parallel programs [36,122,148].

Instruction counters can be used in rollback-recovery to track the number of in-
structions that occur between asynchronous interrupts. A replay system can use the
instruction count to force the execution of the same number of instructions between
asynchronous interrupts. An instruction counter can be implemented in hardware, such

32

as in the PA-RISC precision architecture. It also can be emulated in software [122].
A recent implementation on a DEC 3000/400 workstation shows that the overhead of
program instrumentation and tracking nondeterminism is less than 6% for a variety of
user programs and synthetic benchmarks [158].

5.7 Dependency Tracking

There are three forms for implementing dependency tracking. The first is the simplest
and consists of tagging the message with an index or a sequence number [86]. Depen-
dency tracking also can take the form of piggybacking a vector or a graph on top of each
message. There are techniques for optimizing these forms of tracking by exploiting the
semantics of the communication system and by piggybacking only incremental changes
over application messages. Prototype implementations have shown that the overhead
resulting from tracking is negligible compared to the overhead of checkpointing or
logging [48].

5.8 Recovery
Handling execution restart and replay is a difficult part of implementing a rollback-
recovery system [48,104]. Implanting a process in a different environment during
recovery can create difficulties if its state depends on the pre-failure environment. For
example, the process may need to access files that exist on the local disk of the machine.
The simplest solution to this problem is to attempt to restart the program on the same
host. If this is not feasible, then the system must insulate the process from environment-
specific variables [48]. This can be done for instance by intercepting system calls that
return environment-specific results and replace these results with abstract values under
the control of the recovery system [149]. Also, file access could be made highly
available by placing all files in network-wide highly available file servers or by using
dual-ported disks. In any case, the system must reconstruct the state of the process and
also the supporting kernel-level data structures during recovery.

6 Related Work

Most existing papers on rollback-recovery either assume all processes are piecewise
deterministic or do not take advantage of piecewise determinism at all. In practice, it is
important to support systems consisting of both deterministic and nondeterministic pro-
cesses [87,90]. One challenge is to handle unreplayable nondeterministic events while
still preserving the advantages of piecewise determinism [41,184,190]. Although most
rollback-recovery techniques were originally designed for tolerating hardware failures,
they have also been applied to software and protocol error recovery [169,184,190,193].
Rollback-recovery in shared-memory and distributed shared-memory systems has also
been extensively studied [4,20,54,75,80-83,109,132,170,197,198].

33

This survey has covered mostly rollback-recovery techniques which do not require
or take advantage of special linguistic supports. A substantial amount of research
efforts has also focused on coordinated recovery based on special language constructs
such as recovery blocks and conversations [34,65,66,79,94,96,144,145,200]. Nett
et al. addressed recovery problems in dynamic action models [126-128]. Kim et
al. addressed recovery problems in the Programmer-Transparent Coordination (PTC)
scheme [95,97,98]. Orphan elimination problem in nested transaction systems has
also been studied [69,70,113].

Theoretical aspects of distributed snapshots also have been studied outside the
context of recovery [1,5,38,43,67,101,162,180]. Several fundamental properties
regarding consistent global states have been derived [13,16,120,131,184]. Vector
timestamps [55,121,151,155] and the context graph used in em Psync [133] bear sim-
ilarities to the various dependency tracking techniques. Checkpointing and message
logging can also be used to facilitate the debugging of parallel and distributed pro-
grams [57,63,129,130]. In the area of distributed discrete-event simulation [59,124],
the Time Warp optimistic approach, which inspired the seminal work on optimistic
message logging [168], uses rollbacks to cancel erroneous computations due to the
out-of-order arrivals of time-stamped event messages [59,60,85,118,141].

7 Conclusions

We have reviewed and compared different approaches to rollback-recovery with respect
to a set of properties including the assumption of piecewise determinism, performance
overhead, storage overhead, ease of output commit, ease of garbage collection, ease
of recovery, freedom from domino effect, freedom from orphan processes, and the
extent of rollback. Uncoordinated checkpointing generally has the least constraints
and the lowest overhead. But since it suffers from potential domino effect, uncoordi-
nated checkpointing often needs to be combined with other techniques to be useful in
practice. For applications involving multiple processes executing in coordinated steps,
coordinated checkpointing is often the natural choice to simplify both failure-free and
recovery-time operations. It can also be combined with log-based recovery proto-
cols to simplify the garbage collection task. When desirable, communication-induced
checkpointing with index-based coordination can be used to coordinate checkpoints in
a distributed fashion. For applications that frequently interact with the outside world,
log-based rollback recovery based on piecewise determinism is often a better choice
because it allows efficient output commit. The simplicity of pessimistic logging makes
it attractive for practical applications which can tolerate a higher failure-free overhead.
Causal logging can be employed to reduce the overhead while still preserving the
properties of fast output commit and orphan-free recovery. Alternatively, optimistic
logging provides a tradeoff between the overhead of logging and the extent of rollback
upon a failure. Finally, model-based checkpointing can be used to mimic piecewise
determinism by taking additional checkpoints instead of relying on message logging.

34

Acknowledgement

The authors wish to express their sincere thanks to Pi-Yu Chung, Om Damani, W.
Kent Fuchs, Yennun Huang, Chandra Kintala, Andy Lowry, James Plank, and Paulo
Verissimo for valuable discussions, encouragement and comments.

References
[1] A. Acharya and B. R. Badrinath. Recording distributed snapshots based on causal order

of message delivery. Information Processing Letters, 44(6), December 1992.

[2] A. Acharya and B. R. Badrinath. Checkpointing distributed applications on mobile com-
puters. In Proc. the Third International Conference on Parallel and Distributed Informa-
tion Systems, pages 73-80, September 1994.

[3] M. Ahamad and L. Lin. Using checkpoints to localize the effects of faults in distributed
systems. In Proc. IEEE Symp. Reliable Distributed Syst., pages 2-11,1989.

[4] R. E. Ahmed, R. C. Frazier, and P. N. Marinos. Cache-aided rollback error recovery (carer)
algorithms for shared-memory multiprocessor systems. In Proc. IEEE Fault-Tolerant
Computing Symp., pages 82-88,1990.

[5] M. Ahuja. Repeated global snapshots in asynchronous distributed systems. Technical
Report OSU-CISRC-8/89 TR40, Ohio State University, August 1989.

[6] L. Alvisi, B. Hoppe, and K. Marzullo. Nonblocking and orphan-free message logging
protocols. In Proc. IEEE Fault-Tolerant Computing Symp., pages 145-154,1993.

[7] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, and causal. In Proc.
IEEE Int. Conf. Distributed Comput. Syst., pages 229-236, May 1995.

[8] L. Alvisi and K. Marzullo. Trade-offs in implementing causal message logging protocols.
In ACM Annual Symp. on the Priciples of Distributed Computing, pages 58-67, May
1996.

[9] A. W. Appel. A runtime system. Technical Report CS-TR-220-89, Department of Com-
puter Science, Princeton University, 1989.

[10] A. Arora and M. Gouda. Distributed reset. IEEE Trans. Comput., 43(9):1026-1038,
September 1994.

[11] O. Babaoglu. Fault-tolerant computing based on Mach. In Proceedings of the Usenix
Mach Workshop,pages 186-199,October 1990.

[12] O. Babaoglu and W. Joy. Converting a swap-based system to do paging in an architecture
lacking page-reference bits. In Proceedings of the Symposium on Operating Systems
Principles, pages 78-86,1981.

[13] O. Babaoglu and K. Marzullo. Consistent global states of distributed systems: Funda-
mental concepts and mechanisms. In Distributed Systems, Ed. S. Mullender, pages 55-96.
Addison-Wesley, 1993.

[14] D. F. Bacon. File system measurements and their application to the design of efficient
operation logging algorithms. Proc. IEEE Symp. Reliable Distributed Syst., pages 21-30,
1991.

35

[15] D. F. Bacon. Transparent recovery in distributed systems. ACM Oper. Syst. Review, pages
91-94, April 1991.

[16] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. Consistent checkpointing in
message passing distributed systems. Technical Report No. 2564, INRIA, France, June
1995.

[17] R. Baldoni, J. M. Helary, A. Mostefaoui, and M. Raynal. On modeling consistent check-
points and the domino effect in distributed systems. Technical Report No. 2569, INRIA,
France, June 1995.

[18] J. P. Banätre, M. Banätre, and G. Müller. Ensuring data security and integrity with a
fast stable storage. In Proceedings of the fourth Conference on Data Engineering, pages
285-293, February 1988.

[19] J. P. Banätre, M. Banätre, and G. Müller. Architecture of fault-tolerant multiprocessor
workstations. In Workshop on Workstation Operating Systems, pages 20-24,1989.

[20] M. Banatre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin. An architecture for tolerating
processor failures in shared-memory multiprocessors. Technical Report 707, IRISA,
Rennes, France, March 1993.

[21] G. Barigazzi and L. Strigini. Application-transparent setting of recovery points. In Proc.
IEEE Fault-Tolerant Computing Symp., pages 48-55,1983.

[22] P.A. Barrett, A.M. Hilborne, P. Verissimo, L. Rodrigues, P.G. Bond, D.T. Seaton, and
N. A. Speirs. The Delta-4 extra performance architecture XPA. In Proceedings of the 20th
International Symposium on Fault-Tolerant Computing, pages 481-488, June 1990.

[23] J. F. Bartlett. A NonStop Kernel. In Proc. 8th ACM Symp. on Operating Systems Principles,
pages 22-29,1981.

[24] M. Beck, J. S. Plank, and G. Kingsley. Compiler-assisted checkpointing. Technical Report
CS-94-269, University of Tennessee at Knoxville, December 1994.

[25] B. Bhargava and S. R. Lian. Independent checkpointing and concurrent rollback for
recovery - An optimistic approach. In Proc. IEEE Symp. Reliable Distributed Syst., pages
3-12,1988.

[26] B. Bhargava, S.-R. Lian, and P.-J. Leu. Experimental evaluation of concurrent check-
pointing and rollback recovery algorithms. In Proc. Int. Conf. Data Eng., pages 182-189,
March 1990.

[27] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM Transactions
on Computer Systems, 2^1):39-59, February 1984.

[28] A. Borg, J. Baumbach, and S. Glazer. A message system supporting fault-tolerance. In
Proc. 9th ACM Symp. on Operating Systems Principles, pages 90-99, October 1983.

[29] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle. Fault tolerance under UNIX.
ACM Trans. Comput. Syst., 7(l):l-24, February 1989.

[30] N. S. Bowen and D. K. Pradhan. Survey of checkpoint and rollbak recovery techniques.
Technical Report TR-91-CSE-17, Dept. of Electrical and Computer Engineering, Univer-
sity of Massachusetts, Amherst, July 1991.

[31] N. S. Bowen and D. K. Pradhan. Virtual checkpoints: Architecture and performance.
IEEE Trans. Comput., 41(5):516-525,May 1992.

36

[32] N. S. Bowen and D. K. Pradhan. Processor- and memory-based checkpoint and rollback
recovery. IEEE Computer Magazine, pages 22-31, February 1993.

[33] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed domino-effect free recovery
algorithm. In Proc. IEEE 4th Symp. on Reliability in Distributed Software and Database
Systems, pages 207-215,1984.

[34] R. H. Campbell and B. Randell. Error recovery in asynchronous systems. IEEE Trans.
Software Eng., SE-12(8):811-826,1986.

[35] J. Cao and K. C. Wang. An abstract model of rollback recovery control in distributed
systems. ACM Oper. Syst. Review, pages 62-76, October 1992.

[36] T. Cargill and B. Locanthi. Cheap hardware support for software debugging and profiling.
Proceedings of the 2nd Symposium on Architectural Support for Programming Languages
and Operating Systems, pages 82-83, October 1987.

[37] J. Carter, A. Cox, S. Dwarkadas, E. N. Elnozahy, D. B. Johnson, P. Keleher, S. Rodrigues,
W. Yu, and W. Zwaenepoel. Network multicomputing using recoverable distributed shared
memory. In Proceedings of COMPCON'93, pages 515-523,1993.

[38] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of
distributed systems. ACM Trans. Comput. Syst., 3(l):63-75, February 1985.

[39] M. ChSreque, D. Powell, P. Reynier, J-L. Richier, and J. Voiron. Active replication in Delta-
4. In Proceedings of the 22nd International Symposium on Fault-Tolerant Computing,
pages 28-37, July 1992.

[40] G.-M. Chiu and C.-R. Young. Efficient rollback-recovery technique in distributed com-
puting systems. IEEE Trans. Parallel and Distributed Syst., 7(6):565-577, June 1996.

[41] E. Cohen, Y. M. Wang, and G. Suri. When piecewise determinism is almost true. In Proc.
Pacific Rim International Symposium on Fault-Tolerant Systems, pages 66-71, December
1995.

[42] F. Cristian and F. Jahanian. A timestamp-based checkpointing protocol for long-lived
distributed computations. In Proc. IEEE Symp. Reliable Distributed Syst., pages 12-20,
1991.

[43] C. Critchlow and K. Taylor. The inhibition spectrum and the achievement of causal
consistency. Technical Report TR 90-1101, Cornell University, February 1990.

[44] D. Cummings and L. Alkalaj. Checkpoint/rollback in a distributed system using coarse-
grained dataflow. In Proceedings of the Twenty Fourth Annual International Symposium
on Fault-Tolerant Computing, FTCS-24, pages 424-433, June 1994.

[45] O. P. Damani and V. K. Garg. How to recover efficiently and asynchronously when
optimism fails. In Proc. IEEE Int. Conf. Distributed Comput. Syst., pages 108-115,1996.

[46] G. Deconinck, J. Vounckx, R. Cuyvers, and R. Lauwereins. Survey of checkpointing
and rollback techniques. Technical Report 03.1.8 and 03.1.12, ESAT-ACCA Laboratory,
Katholieke Universiteit Leuven, Belgium, June 1993.

[47] G. Deconinck, J. Vounckx, R. Lauwereins, and J. A. Peperstraete. Survey of backward
error recovery techniques for multicomputers based on checkpointing and rollback. In
Proc. IASTED Int. Conf. on Modelling and Simulation, pages 262-265, May 1993.

37

[48] E. N. Elnozahy. Manetho: Fault Tolerance in Distributed Systems Using Rollback-
Recovery and Process Replication. PhD thesis, Department of Computer Science, Rice
University, October 1993. Also available as Technical Report TR93-212.

[49] E. N. Elnozahy. Fault Tolerance for Clusters of Workstations, M. Banatre and P. Lee
(Editors), chapter 8. Springer Verlag, August 1994.

[50] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The performance of consistent
checkpointing. In Proc. IEEE Symp. Reliable Distributed Syst., pages 39-47, October
1992.

[51] E. N. Elnozahy and W. Zwaenepoel. Manetho: Transparent rollback-recovery with low
overhead, limited rollback and fast output commit. IEEE Trans. Comput, 41(5):526—531,
May 1992.

[52] E. N. Elnozahy and W. Zwaenepoel. Replicated distributed processes in manetho. In
Proceedings of the Twenty Second Annual International Symposium on Fault-Tolerant
Computing, FTCS-22, pages 18-27, July 1992.

[53] E. N. Elnozahy and W. Zwaenepoel. On the use and implementation of message logging.
In Proc. IEEE Fault-Tolerant Computing Symp., pages 298-307,1994.

[54] M. J. Feeley, J. S. Chase, V. Narasayya, and H. M. Levy. Integrating coherency and
recovery in distributed systems. In Proc. Symp. on Operating System Design and Imple-
mentation, 1994.

[55] C. J. Fidge. Timestamps in message-passing systems that preserve the partial ordering. In
Proc. 11th Australian Computer Science Conference, pages 55-66, February 1988.

[56] M. J. Fischer, N. D. Griffeth, andN. A. Lynch. Global states of a distributed system. IEEE
Trans. Software Eng., SE-8(3): 198-202, May 1982.

[57] J. Fowler and W. Zwaenepoel. Causal distributed breakpoints. In Proc. IEEE Int. Conf.
Distributed Comput. Syst., pages 134-141,1990.

[58] T. M. Frazier and Y. Tamir. Application-transparent error-recovery techniques for mul-
ticomputers. In The Fourth Conferences on Hypercubes, Concurrent Computers, and
Applications, pages 103-108, March 1989.

[59] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33(10):30-53, October
1990.

[60] A. Gafni. Rollback mechanisms for optimistic distributed simulation systems. In Proc.
SCS Multiconference on Distributed Simulation, pages 61-67, July 1988.

[61] V. K. Garg. Some optimal algorithms for decomposed partially ordered sets. Information
Processing Letters, 44:39-43, November 1992.

[62] A. P. Goldberg, A. Gopal, K. Li, R. E. Strom, and D. F. Bacon. Transparent recovery of
Mach applications. In First USENIXMach Workshop,Octobzx 1990.

[63] A. P. Goldberg, A. Gopal, A. Lowry, and R. E. Strom. Restoring consistent global states
of distributed computations. In Proc. ACM/ONR Workshop on Parallel and Distributed
Debugging, May 1991.

[64] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. San Mateo,
CA: Morgan Kaufmann Publishers, 1993.

38

[65] S. T. Gregory and J. C. Knight. A new linguistic approach to backward error recovery. In
Proc. IEEE Fault-Tolerant Computing Symp., pages 404-409,1985.

[66] S. T. Gregory and J. C. Knight. On the provision of backward error recovery in production
programming languages. In Proc. IEEE Fault-Tolerant Computing Symp., pages 506-511,
1989.

[67] B. Groselj. Bounded and minimum global snapshots. IEEE Parallel and Distributed
Technology, 1(4), November 1993.

[68] V. Hadzilacos. An algorithm for minimizing roll back cost. In Proc. ACM Symp. on
Principles of Database Systems, pages 93-97,1982.

[69] M. Herlihy, N. Lynch, M. Merritt, and W. Weihl. On the correctness of orphan management
algorithms. J. of ACM, 39(4):881-930, October 1992.

[70] M. Herlihy and M. McKendry. Timestamp-based orphan elimination. IEEE Trans. Soft-
ware Eng., 15(7):825-831, July 1989.

[71] C. A. R. Hoare. Communicating sequential processes. Communications of the ACM,
21(8):666-677, August 1978.

[72] Y. Huang and C. Kintala. Software implemented fault tolerance: Technologies and
experience. In Proc. IEEE Fault-Tolerant Computing Symp., pages 2-9, June 1993.

[73] Y. Huang and C. Kintala. A software fault tolerance platform. In Practical Reusable
Software, Ed. B. Krishnamurthy, pages 223-245. John Wiley & Sons, 1995.

[74] Y. Huang and Y. M. Wang. Why optimistic message logging has not been used in
telecommunications systems. In Proc. IEEE Fault-Tolerant Computing Symp., pages
459-463, June 1995.

[75] G. G. Richard HI and M. Singhal. Using logging and asynchronous checkpointing to im-
plement recoverable distributed shared memory. In Proc. IEEE Symp. Reliable Distributed
Syst., pages 58-67,1993.

[76] S. Israel and D. Morris. A non-intrusive checkpointing protocol. In The Phoenix Confer-
ence on Communications and Computers, pages 413-421,1989.

[77] R Jalote. Fault tolerant processes. Distributed Computing, 3:187-195,1989.

[78] P. Jalote. Fault Tolerance in Distributed Systems. Englewood Cliffs, New Jersey Prentice-
Hall, 1994.

[79] P. Jalote and R. H. Campbell. Atomic actions for fault-tolerance using CSP. IEEE Trans.
Software Eng., SE-12(l):59-68,1986.

[80] G. Janakiraman and Y. Tamir. Coordinated checkpointing-rollback error recovery for
distributed shared memory multicomputer. In Proc. IEEE Symp. Reliable Distributed
Syst., pages 42-51, October 1994.

[81] B. Janssens and W. K. Fuchs. Experimental evaluation of multiprocessor cache-based
error recovery. In Proc. Int. Conf. Parallel Processing, pages I-505-I-508,1991.

[82] B. Janssens and W. K. Fuchs. Relaxing consistency in recoverable distributed shared
memory. In Proc. IEEE Fault-Tolerant Computing Symp., pages 155-163, June 1993.

[83] B. Janssens and W K. Fuchs. Reducing interprocessor dependence in recoverable dis-
tributed shared memory. In Proc. IEEE Symp. Reliable Distributed Syst., pages 34-41,
October 1994.

39

[84] D. P. Jasper. A discussion of checkpoint restart. Software Age, October 1969.

[85] D. R. Jefferson. Virtual time. Trans, on Programming Languages and Systems, 7(3):404-
425, July 1985.

[86] D. B. Johnson. Distributed system fault tolerance using message logging and checkpoint-
ing. PhD thesis, Department of Computer Science, Rice University, December 1989.

[87] D. B. Johnson. Efficient transparent optimistic rollback recovery for distributed application
programs. In Proc. IEEE Symp. Reliable Distributed Syst., pages 86-95, October 1993.

[88] D. B. Johnson and W. Zwaenepoel. Sender-based message logging. In Proc. IEEE
Fault-Tolerant Computing Symp., pages 14-19,1987.

[89] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic
message logging and checkpointing. J. Algorithms, 11:462-491,1990.

[90] D. B. Johnson and W. Zwaenepoel. Transparent optimistic rollback recovery. ACM Oper.
Syst. Review, pages 99-102, April 1991.

[91] T. T-Y. Juang and S. Venkatesan. Crash recovery with little overhead. In Proc. IEEE Int.
Conf. Distributed Comput. Syst., pages 454-461,1991.

[92] M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S. Tanenbaum. Transparent fault-tolerance
in parallel Orca programs. Technical Report IR-258, Vrije Universiteit, Amsterdam,
October 1991.

[93] J. L. Kim and T. Park. An efficient protocol for checkpointing recovery in distributed
systems. IEEE Trans. Parallel and Distributed Syst., 4(8):955-960, August 1993.

[94] K. H. Kim. Approaches to mechanization of the conversation scheme based on monitors.
IEEE Trans. Software Eng., SE-8(3):189-197, May 1982.

[95] K. H. Kim. Programmer-transparent coordination of recovering concurrent processes:
Philosophy and rules for efficient implementation. IEEETrans. Software Eng., 14(6):810-
821, June 1988.

[96] K. H. Kim. The distributed recovery block scheme. In Software Fault Tolerance, Ed. M.
R. Lyu, pages 189-209. John Wiley & Sons, 1995.

[97] K. H. Kim and J. H. You. A highly decentralized implementation model for the
Programmer-Transparent Coordination (PTC) scheme for cooperative recovery. In Proc.
IEEE Fault-Tolerant Computing Symp., pages 282-289,1990.

[98] K. H. Kim, J. H. You, and A. Abouelnaga. A scheme for coordinated execution of
independently designed recoverable distributed processes. In Proc. IEEE Fault-Tolerant
Computing Symp., pages 130-135,1986.

[99] B. A. Kingsbury and J. T. Kline. Job and process recovery in a UNIX-based operating
system. In Usenix Association, Winter Conference Proceedings, 1989, pages 355-364,
January 1989.

[100] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. IEEE
Trans. Software Eng., SE-13(1):23-31, January 1987.

[101] T. H. Lai and T. H. Yang. On distributed snapshots. Information Processing Letters,
25:153-158, May 1987.

[102] L. Lamport. Time, clocks and the ordering of events in a distributed system. Commun.
ACM, 21(7):558-565, July 1978.

40

103] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage system.
Technical report, Xerox Palo Alto Research Center, April 1979.

104] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with Instant
Replay. IEEE Transactions on Computers, C-36(4):471-482, April 1987.

105] P. A. Lee and T. Anderson. Fault Tolerance Principles and Practice. Wien: Springer-
Verlag, 1990.

106] J. Leon, A. L. Fisher, and P. Steenkiste. Fail-safe PVM: A portable package for distributed
programming with transparent recovery. Technical Report CMU-CS-93-124, Department
of Computer Science, Carnegie Mellon University, February 1993.

107] H. V. Leong and D. Agrawal. Using message semantics to reduce rollback in optimistic
message logging recovery schemes. In Proc. IEEE Int. Conf. Distributed Comput. Syst.,
pages 227-234,1994.

108] C. C. Li and W. K. Fuchs. CATCH: Compiler-assisted techniques for checkpointing. In
Proceedings of the 20th International Symposium on Fault-Tolerant Computing, pages
74-81,1990.

109] K. Li, J. F. Naughton, and J. S. Plank. Real-time, concurrent checkpointing for parallel
programs. In Proc. 2nd ACM SIGPLAN Symp. on Principles and Practice of Parallel
Programming, pages 79-88, March 1990.

110] K. Li, J. F. Naughton, and J. S. Plank. Checkpointing multicomputer applications. In
Proc. lEEESymp. Reliable Distributed Syst., pages 2-11,1991.

Ill] K. Li, J. F. Naughton, and J. S. Plank. An efficient checkpointing method for multi-
computers with wormhole routing. Int. J. of Parallel Program., 20(3): 159-180, June
1992.

112] L. Lin and M. Ahamad. Checkpointing and rollback-recovery in distributed object based
systems. In Proc. IEEE Fault-Tolerant Computing Symp., pages 97-104,1990.

113] B. Liskov, R. Scheifler, E. Walker, and W. Weihl. Orphan detection. In Proc. IEEE
Fault-Tolerant Computing Symp., pages 2-7,1987.

114] M. Litzkow and M. Solomon. Supporting checkpointing and process migration outside
the unix kernel. In Usenix Winter 1992 Technical Conference, pages 283-290, January
1992.

115] J. Long, W. K. Fuchs, and J. A. Abraham. Compiler-assisted static checkpoint insertion.
In Proceedings of the Twenty Second Annual International Symposium on Fault-Tolerant
Computing, FTCS-22, pages 58-65, July 1992.

116] A. Lowry, J. R. Russell, and A. P. Goldberg. Optimistic failure recovery for very large
networks. In Proc. IEEE Symp. Reliable Distributed Syst., pages 66-75,1991.

117] A. Lowry and R. E. Strom. Some problems with optimistic recovery and their solutions.
Personal communications, December 1992.

118] V. Madisetti, J. Walrand, and D. Messerschmitt. WOLF: A rollback algorithm for op-
timistic distributed simulation systems. In Simulation Conference Proceedings, pages
296-305, December 1988.

119] D. Manivannan and M. Singhal. A low-overhead recovery technique using quasi-
synchronous checkpointing. In Proc. IEEE Int. Conf. Distributed Comput. Syst., pages
100-107,1996.

41

[120] D. Manivannan and M. Singhal. Quasi-synchronous checkpointing: Models, character-
ization, and classification. Tech. Rep. No. OSU-CISRC-5/96-TR33, Dept. of Computer
and Information Science, Ohio State University, 1996.

[121] F. Mattern. Virtual time and global states of distributed systems. In Proc. Workshop on
Parallel and Distributed Algorithms, pages 215-226, October 1988.

[122] J. M. Mellor-Crummey and T. J. LeBlanc. A software instruction counter. Proceedings of
the 3rd Symposium on Architectural Support for Programming Languages and Operating
Systems, pages 78-86, April 1989.

[123] R M. Merlin and B. Randell. State restoration in distributed systems. In Proc. IEEE
Fault-Tolerant Computing Symp., pages 129-134, June 1978.

[124] J. Misra. Distributed discrete-event simulation. ACM Computing Surveys, 18(l):39-65,
March 1986.

[125] G. Muller, M. Hue, andN. Peyrouz. Performance of consistent checkpointing in a modular
operating system: Results of the FTM experiment. Lecture Notes in Computer Science:
Dependable Computing- EDCC-1, pages 491-508, October 1994.

[126] E. Nett. The recovery problem in distributed systems. In Proc. Workshop on the Future
Trends of Distributed Computing Systems in the 1990s, pages 357-365,1988.

[127] E. Nett, R. Kroger, and J. Kaiser. Implementing a general error recovery mechanism in
a distributed operating system. In Proc. IEEE Fault-Tolerant Computing Symp., pages
124-129,1986.

[128] E. Nett and B. Weiler. Nested dynamic actions - How to solve the fault containment
problem in a cooperative action model. In Proc. IEEE Symp. Reliable Distributed Syst.,
pages 106-115,1994.

[129] R. H.B.NetzerandB. P. Miller. Optimal tracing andreplay for debugging message-passing
parallel programs. In Proc. Supercomputing '92, pages 502-511, November 1992.

[130] R. H. B. Netzer and J. Xu. Adaptive message logging for incremental program replay.
IEEE Parallel and Distributed Technology, l(4):32-39, November 1993.

[131] R. H. B. Netzer and J. Xu. Necessary and sufficient conditions for consistent global
snapshots. IEEE Trans. Parallel and Distributed Syst., 6(2): 165-169, February 1995.

[132] N. Neves, M. Castro, and P. Guedes. A checkpointing protocol for an entry consistent
shared memory system. In Proc. 13th ACM Symp. on Principles ofDistr. Computing,
1994.

[133] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using context
information in interprocess communication. ACM Trans. Comput. Syst., 7(3):217-246,
August 1989.

[134] S.L. Peterson and P. Kearns. Rollback based on vector time. In Proc. IEEE Symp. Reliable
Distributed Syst., pages 68-77, October 1993.

[135] J. S. Plank. Efficient Checkpointing on MIMD Architectures. PhD thesis, Department of
Computer Science, Princeton University, June 1993.

[136] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt: Transparent checkpointing under
Unix. In Proc. Usenix Technical Conference, pages 213-224, January 1995.

42

[137] J. S. Plank and K. Li. Faster checkpointing with 71+1 parity. In Proceedings of the Twenty
Fourth Annual International Symposium on Fault-Tolerant Computing, FTCS-24, pages
288-297, June 1994.

[138] J.S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast check-
pointing. IEEE Technical Committee on Operating Systems and Application Environments,
7(4): 10-14, Winter 1995.

[139] J. B. Postel. Internet Protocol. Internet Request For Comments RFC 791, September
1981.

[140] M. L. Powell and D. L. Presotto. Publishing: A reliable broadcast communication
mechanism. In Proc. 9th ACM Symp. Oper. Syst. Principles, pages 100-109, October
1983.

[141] A. Prakash and R. Subramanian. Filter: An algorithm for reducing cascaded rollbacks in
optimistic distributed simulation. In Proc. the 24th Annual Simulation Symposium, 1991
Simulation Multiconference, pages 123-132, April 1991.

[142] P. Ramanathan and K. G. Shin. Checkpointing and rollback recovery in a distributed
system using common time base. In Proc. IEEE Symp. Reliable Distributed Syst., pages
13-21,1988.

[143] P. Ramanathan and K. G. Shin. Use of common time base for checkpointing and rollback
recovery in a distributed system. IEEE Trans. Software Eng., 19(6):571—583, June 1993.

[144] B. Randell. System structure for software fault tolerance. IEEE Trans. Software Eng.,
SE-l(2):220-232, June 1975.

[145] B. Randell and J. Xu. The evolution of the recovery block concept. In Software Fault
Tolerance, Ed. M. R. Lyu, pages 1-21. John Wiley & Sons, 1995.

[146] M. Ruffin. Kitlog: A generic logging service. In Proceedings of the 11th Symposium on
Reliable Distributed Systems, pages 139-148, October 1992.

[147] D. L. Russell. State restoration in systems of communicating processes. IEEE Trans.
Software Eng., SE-6(2):183-194, March 1980.

[148] M. Russinovich, B. Cogswell, and Z. Segall. Replay for concurrent nondeterministic
shared memory applications. To appear in Proc. SIGPLAN '96.

[149] M. Russinovich, Z. Segall, andD. P. Siewiorek. Application transparent fault management
in fault-tolerant mach. In Proc. IEEE Fault-Tolerant Computing Symp., pages 10-19, June
1993.

[150] R. D. Schlichting and F. B. Schneider. Fail-stop processors: An approach to designing
fault-tolerant computing systems. ACM Trans. Comput. Syst., l(3):222-23$, August 1983.

[151] R. Schwarz and F. Mattern. Detecting causal relationships in distributed computations: in
search of the holy grail. Distributed Computing, 7:149-174,1994.

[152] E. Seligmanand A. Beguelin. High-level fault tolerance in distributed programs. Technical
Report CMU-CS-94-223, Department of Computer Science, Carnegie Mellon University,
December 1994.

[153] D. D. Sharma and D. K. Pradhan. An efficient coordinated checkpointing scheme for
multicomputers. In Proc. IEEE Workshop on Fault-Tolerant Parallel and Distributed
Systems, June 1994.

43

[154] L. M. Silva and J. G. Silva. Global checkpointing for distributed programs. In Proc. IEEE
Symp. Reliable Distributed Syst., pages 155-162, October 1992.

[155] M. Singhal and A. Kshemkalyani. An efficient implementation of vector clocks. Infor-
mation Processing Letters, 43:47-52,1992.

[156] M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill,
1994.

[157] A. P. Sistla and J. L. Welch. Efficient distributed recovery using message logging. In
Proc. 8th ACM Symposium on Principles of Distributed Computing, pages 223-238,
August 1989.

[158] J. H. Slye and E. N. Elnozahy. Supporting nondeterministic execution in fault-tolerant sys-
tems. In Proceedings of the 26th International Symposium on Fault-Tolerant Computing,
pages 250-259, June 1996.

[159] J. M. Smith and J. Ioannidis. Implementing remote forkO with checkpoint/restart. IEEE
Technical Committee on Operating Systems Newsletter, pages 12-16, February 1989.

[160] S. W. Smith, D. B. Johnson, and J. D. Tygar. Completely asynchronous optimistic recovery
with minimal rollbacks. In Proc. IEEE Fault-Tolerant Computing Symp., pages 361-370,
1995.

[161] S.W. Smith and D.B. Johnson. Minimizing timestamp size for completely asynchronous
optimistic recovery with minimal rollback. In Proceedings of the 15th Symposium on
Reliable Distributed Systems, October 1996.

[162] M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc. IEEE Int. Conf.
Distributed Comput. Syst., pages 382-388,1986.

[163] M. Staknis. Sheaved memory: Architectural support for state saving and restoration
in paged systems. In Proceedings of the 3rd Symposium on Architectural Support'for
Programming Languages and Operating Systems, pages 96-102, April 1989.

[164] G. Stellner. Consistent checkpoints of PVM applications. In First European PVM User
Group Meeting, 1994.

[165] G. Stellner. CoCheck: Checkpointing and process migration forMPI. In 10th International
Parallel Processing Symposium, April 1996.

[166] R. E. Strom,, S. A. Yemini, and D. F. Bacon. A recoverable object store. In Proc. Hawaii
International Conference on System Sciences, pages U-215-U-221, January 1988.

[167] R. E. Strom, D. F. Bacon, and S. A. Yemini. Volatile logging in n-fault-tolerant distributed
systems. In Proc. IEEE Fault-Tolerant Computing Symp., pages 44—49,1988.

[168] R. E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM Trans.
Comput. Syst., 3(3):204-226, August 1985.

[169] G. Suri, Y. Huang, Y. M. Wang, W. K. Fuchs, and C. Kintala. An implementation and
performance measurement of the progressive retry technique. In Proc. IEEE International
Computer Performance and Dependability Symposium, pages 41-48, April 1995.

[170] G. Suri, B. Janssens, and W K. Fuchs. Reduced overhead logging for rollback recovery
in distributed shared memory. In Proc. IEEE Fault-Tolerant Computing Symp., pages
279-288, June 1995.

44

[171] V.-O. Tarn and M. Hsu. Fast recovery in distributed shared virtual memory systems. In
The 10th International Conference On Distributed Computing Systems, pages 38-45, May
1990.

[172] Y. Tamir and T. M. Frazier. Application-transparent process-level error recovery for
multicomputers. In Hawaii International Conferences on System Sciences-22, pages 296-
305, January 1989.

[173] Y. Tamir and T. M. Frazier. Error-recovery in multicomputers using asynchronous co-
ordinated checkpointing. Technical Report CSD-910066, University of California, Los
Angeles, September 1991.

[174] Y. Tamir and C. H. Sequin. Error recovery in multicomputers using global checkpoints.
In Proc. Int. Conf. Parallel Processing, pages 32-41,1984.

[175] D. J. Taylor and M. L. Wright. Backward error recovery in a UNIX environment. In
Proceedings of the 16th International Symposium on Fault-Tolerant Computing, pages
118-123,1986.

[176] M. Theimer, K. Lantz, and D. R. Cheriton. Preemptable remote execution facilities in
the V-system. In Proceedings of the 10th SIGOPS Symposium on Operating Systems
Principles, pages 2-12, December 1985.

[177] Z. Tong, R. Y. Kain, and W. T. Tsai. Rollback recovery in distributed systems using loosely
synchronized clocks. IEEE Trans. Parallel and Distributed Syst., 3(2):246-251, March
1992.

[178] K. Tsuruoka, A. Kaneko, and Y. Nishihara. Dynamic recovery schemes for distributed
processes. In Proc. IEEE IndSymp. on Reliability in Distributed Software and Database
Systems, pages 124-130,1981.

[179] N. H. Vaidya. Consistent logical checkpointing. Technical Report* 94-051, Dept. of
Computer Science, Texas A&M University, July 1994.

[180] S. Venkatesan. Message-optimal incremental snapshots. In Proc. IEEE Int. Conf. Dis-
tributed Comput. Syst., pages 53-60,1989.

[181] K. Venkatesh, T Radhakrishnan, and H. F. Li. Optimal checkpointing and local recording
for domino-free rollback recovery. Information Processing Letters, 25:295-303, July
1987.

[182] Y. M. Wang. Consistent global checkpoints that contain a given set of local checkpoints.
To appear in IEEE Trans, on Computers.

[183] Y. M.Wang. Space Reclamation for Uncoordinated Checkpointing in Message-Passing
Systems. PhD thesis, Department of Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign, August 1993.

[184] Y. M. Wang. The maximum and minimum consistent global checkpoints and their ap-
plications. In Proc. IEEE Symp. Reliable Distributed Syst., pages 86-95, September
1995.

[185] Y. M. Wang, P. Y. Chung, andW. K. Fuchs. Tight upper bound on useful distributed system
checkpoints. Tech. Rep. CRHC-95-16, Coordinated Science Laboratory, University of
Illinois at Urbana-Champaign, 1995.

[186] Y. M. Wang, P. Y. Chung, I. J. Lin, and W K. Fuchs. Checkpoint space reclamation
for uncoordinated checkpointing in message-passing systems. IEEE Trans. Parallel and
Distributed Syst., 6(5):546-554, May 1995.

45

[187] Y. M. Wang and W. K. Fuchs. Optimistic message logging for independent checkpointing
in message-passing systems. In Proc. IEEE Symp. Reliable Distributed Syst., pages 147-
154, October 1992.

[188] Y. M. Wang and W. K. Fuchs. Scheduling message processing for reducing rollback
propagation. In Proc. IEEE Fault-Tolerant Computing Symp., pages 204-211, July 1992.

[189] Y. M. Wang and W K. Fuchs. Lazy checkpoint coordination for bounding rollback
propagation. In Proc. IEEE Symp. Reliable Distributed Syst., pages 78-85, October 1993.

[190] Y M. Wang, Y. Huang, and W. K. Fuchs. Progressive retry for software error recovery
in distributed systems. In Proc. IEEE Fault-Tolerant Computing Symp., pages 138-144,
June 1993.

[191] Y. M. Wang, Y Huang, K. P. Vo, P. Y Chung, and C. Kintala. Checkpointing and its
applications. In Proc. IEEE Fault-Tolerant Computing Symp., pages 22-31, June 1995.

[192] Y M. Wang, A. Lowry, and W. K. Fuchs. Consistent global checkpoints based on direct
dependency tracking. Information Processing Letters, 50(4):223-230, May 1994.

[193] Y M. Wang, Michael Merritt, and A. B. Romanovsky. Guaranteed deadlock recovery:
Deadlock resolution with rollback propagation. In Proc. Pacific Rim International Sym-
posium on Fault-Tolerant Systems, pages 92-97, December 1995.

[194] Z. Wöjcik andB. E. Wöjcik. Fault tolerant distributed computing using atomic send receive
checkpoints. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed
Processing, pages 215-222,1990.

[195] W. G. Wood. A decentralized recovery control protocol. In Proc. IEEE Fault-Tolerant
Computing Symp., pages 159-164,1981.

[196] W. G. Wood. Recovery control of communicating processes in a distributed system. In
Reliable Computer Systems, Ed. S. K. Shrivastava, pages 448-473. Berlin, Germany:
Springer-Verlag, 1985.

[197] K. L. Wu and W K. Fuchs. Recoverable distributed shared virtual memory. IEEE Trans.
Comput., 39(4):460-469, April 1990.

[198] K. L. Wu, W K. Fuchs, and J. H. Patel. Error recovery in shared memory multiprocessors
using private caches. IEEE Trans. Parallel and Distributed Syst., 1(2):231-240, April
1990.

[199] J. Xu and R. H. B. Netzer. Adaptive independent checkpointing for reducing rollback
propagation. In Proc. 5th IEEE Symp. on Parallel and Distributed Processing, pages
754-761, December 1993.

[200] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z. Wu. Fault tolerance in
concurrent object-oriented software through coordinated error recovery. In Proc. IEEE
Fault-Tolerant Computing Symp., pages 499-509,1995.

46

